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1. PUBLIC HEALTH STATEMENT


 This Statement was prepared to give you information about
 
nitrobenzene and to emphasize the human health effects that may result
 
from exposure to it. The Environmental Protection Agency (EPA) has
 
identified 1,177 sites on its National Priorities List (NPL).
 
Nitrobenzene has been found at 7 of these sites. However, we do not
 
know how many of the 1,177 NPL sites have been evaluated for
 
nitrobenzene. As EPA evaluates more sites, the number of sites at which
 
nitrobenzene is found may change. The information is important for you
 
because nitrobenzene may cause harmful health effects and because these
 
sites are potential or actual sources of human exposure to nitrobenzene.
 

When a chemical is released from a large area, such as an
 
industrial plant, or from a container, such as a drum or bottle, it
 
enters the environment as a chemical emission. This emission, which is
 
also called a release, does not always lead to exposure. You can be
 
exposed to a chemical only when you come into contact with the chemical.
 
You may be exposed to it in the environment by breathing, eating, or
 
drinking substances containing the chemical or from skin contact with
 
it.
 

If you are exposed to a hazardous substance such as nitrobenzene,
 
several factors will determine whether harmful health effects will occur
 
and what the type and severity of those health effects will be. These
 
factors include the dose (how much), the duration (how long), the route
 
or pathway by which you are exposed (breathing, eating, drinking, or
 
skin contact), the other chemicals to which you are exposed, and your
 
individual characteristics such as age, sex, nutritional status, family
 
traits, life style, and state of health.
 

1.1 WHAT IS NITROBENZENE?
 

Nitrobenzene is an oily yellow liquid with an almond-like odor. It
 
may be pale yellow-brown in appearance. It dissolves only slightly in
 
water, but very easily in some other chemicals.
 

Nitrobenzene is produced in large quantities for industrial use.
 
Approximately 98% of the nitrobenzene produced in the United States is
 
used to manufacture a chemical known as aniline. Nitrobenzene is also
 
used to produce lubricating oils such as those used in motors and
 
machinery. A very small amount of nitrobenzene is used in the
 
manufacture of dyes, drugs, pesticides, and synthetic rubber.
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1. PUBLIC HEALTH STATEMENT
 

Small amounts of nitrobenzene are released to the air and to bodies
 
of water by the industries that use this chemical. However, it is
 
broken down to other chemicals within a few days after it is released.
 
Air and water in most areas contain no nitrobenzene or such low amounts
 
that they cannot be measured.
 

More information on the chemical and physical properties of
 
nitrobenzene can be found in Chapter 3. Its production, import, uses,
 
and disposal are presented in Chapter 4, and its occurrence and fate in
 
the environment are described in Chapter 5.
 

1.2 HOW MIGHT I BE EXPOSED TO NITROBENZENE?
 

Because nitrobenzene is not usually found at hazardous waste sites,
 
it is unlikely that you will be exposed to nitrobenzene if you live near
 
one of these sites. However, you may be exposed if you live near one of
 
the seven waste sites where it has been found or near a manufacturing or
 
processing plant, such as those involved in petroleum refining and
 
chemical manufacturing. Persons in these areas may be exposed to
 
nitrobenzene in the air they breathe. However, even in these cases, the
 
levels of nitrobenzene have been found to be extremely low, usually less
 
than 1 ppb (one part nitrobenzene per billion parts of air). Levels of
 
nitrobenzene in the air of residential areas are even lower.
 
Nitrobenzene is almost never found in drinking water. There is no
 
information available on the levels of nitrobenzene in food.
 

The most common way that humans are exposed to this compound is by
 
occupational exposure. If you work in a plant or factory that produces
 
nitrobenzene or uses nitrobenzene to make other products such as dyes,
 
drugs, pesticides or synthetic rubber, you may be exposed to
 
nitrobenzene in the air that you breathe or through your skin.
 

For more information on human exposure to nitrobenzene, see
 
Chapter 5.
 

1.3 HOW CAN NITROBENZENE ENTER AND LEAVE MY BODY?
 

Nitrobenzene can enter your body easily and quickly through your
 
lungs, through your skin, or if you eat or drink contaminated food or
 
water. Nitrobenzene is easily absorbed through the skin and this is a
 
frequent pathway of human exposure. Drinking alcoholic beverages may
 
result in nitrobenzene entering your body at a faster rate, no matter
 
how you are exposed.
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1. PUBLIC HEALTH STATEMENT
 

Nitrobenzene and its breakdown products leave the body within a few
 
days. These are eliminated mostly in the urine and to a smaller extent
 
in the feces.
 

More information on how nitrobenzene enters and leaves the body can
 
be found in Chapter 2.
 

1.4 HOW CAN NITROBENZENE AFFECT MY HEALTH?
 

Nitrobenzene can cause a wide variety of harmful health effects to
 
exposed persons. Direct contact of small amounts of nitrobenzene with
 
the skin or eyes may cause mild irritation. Repeated exposures to a
 
high concentration of nitrobenzene can result in a blood condition
 
called methemoglobinemia. This condition affects the ability of the
 
blood to carry oxygen. Following such an exposure, the skin may turn a
 
bluish color. This may be accompanied by nausea, vomiting and shortness
 
of breath. Effects such as headache, irritability, dizziness, weakness,
 
and drowsiness may also occur. If the exposure level is extremely high,
 
nitrobenzene can cause coma and possibly death unless prompt medical
 
treatment is received. Consuming alcoholic beverages during
 
nitrobenzene exposure may increase the harmful effects of nitrobenzene.
 

In studies with laboratory animals, a single dose of nitrobenzene
 
fed to male rats resulted in damage to the testicles and decreased
 
levels of sperm. This suggests that decreased fertility may be a
 
concern in humans. There is very little information available about the
 
effects of long-term exposure of humans or animals to nitrobenzene, and
 
it is not known whether exposure to nitrobenzene can cause cancer.
 

Further information on the health effects of nitrobenzene in humans
 
and animals can be found in Chapter 2. More information on nitrobenzene
 
breakdown products can be found in Chapter 2. There are populations
 
that are unusually susceptible to nitrobenzene, and this is further
 
discussed in Chapter 2.
 

1.5 WHAT LEVELS OF EXPOSURE HAVE RESULTED IN HARMFUL HEALTH EFFECTS?
 

Tables 1-1 through 1-4 show the relationship between exposure to
 
nitrobenzene at certain levels and known health effects. The exposure
 
of laboratory animals to nitrobenzene through skin contact has resulted
 
in harmful effects similar to those seen in laboratory animals by other
 
routes of exposure. In general, the longer the period of contact with
 
the skin, the more severe the effects.
 

Nitrobenzene can be smelled in water when it is present at
 
0.11 mg/L (milligrams of nitrobenzene per liter of water) or in air at
 
0.018 ppm (0.018 parts of nitrobenzene per million parts of air). It
 
has an odor characteristic of bitter almonds or shoe polish.
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1. PUBLIC HEALTH STATEMENT
 

More information on the health effects associated with exposure to
 
nitrobenzene is presented in Chapter 2.
 

1.6 	WHERE A MEDICAL TEST TO DETERMINE WHETHER I HAVE BEEN
 
EXPOSED TO NITROBENZENE?
 

Nitrobenzene reacts with red blood cells in the body to produce
 
methemoglobin. If you have recently been exposed to nitrobenzene, the
 
levels of methemoglobin in your blood will be elevated. This level can
 
be measured. However, many toxic chemicals produce methemoglobin, and
 
this method does not give specific information about nitrobenzene
 
exposure.
 

In cases of long-term exposure to nitrobenzene, the presence of its
 
breakdown products, p-nitrophenol and p-aminophenol, in the urine is an
 
indication of nitrobenzene exposure. These tests require special
 
equipment and cannot be routinely done in a doctor’s office. The
 
results of these tests cannot be used to determine the level of
 
nitrobenzene exposure or if harmful health effects can be expected to
 
occur.
 

Information regarding tests for the detection of nitrobenzene in
 
the body is presented in Chapters 2 and 6.
 

1.7 	WHAT RECOMMENDATIONS HAS THE FEDERAL GOVERNMENT MADE TO PROTECT
 
HUMAN HEALTH?
 

The federal government has developed regulations and guidelines in
 
order to protect individuals from the possible health effects of
 
nitrobenzene in drinking water. The Environmental Protection Agency
 
(EPA) has concluded that the amount of nitrobenzene in drinking water
 
should not exceed 19.8 mg/L and that any release in excess of 1,000
 
pounds should be reported.
 

The Occupational Safety and Health Administration (OSHA) has set a
 
legal limit (Permissible Exposure Limit, or PEL) of 1 ppm in workroom
 
air to protect workers during an 8-hour shift in a 40-hour workweek.
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1.8 WHERE CAN I GET MORE INFORMATION?
 

If you have any more questions or concerns not covered here, please
 
contact your State Health or Environmental Department or:
 

Agency for Toxic Substances and Disease Registry
 
Division of Toxicology
 
1600 Clifton Road, E-29
 
Atlanta, Georgia 30333
 

This agency can also give you information on the location of the
 
nearest occupational and environmental health clinics. Such clinics
 
specialize in recognizing, evaluating, and treating illnesses that
 
result from exposure to hazardous substances.
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2. HEALTH EFFECTS
 

2.1 INTRODUCTION
 

This chapter contains descriptions and evaluations of studies and
 
interpretation of data on the health effects associated with exposure to
 
nitrobenzene. Its purpose is to present levels of significant exposure
 
for nitrobenzene based on toxicological studies, epidemiological
 
investigations, and environmental exposure data. This information is
 
presented to provide public health officials, physicians, toxicologists,
 
and other interested individuals and groups with (1) an overall
 
perspective of the toxicology of nitrobenzene and (2) a depiction of
 
significant exposure levels associated with various adverse health
 
effects.
 

2.2 DISCUSSION OF HEALTH EFFECTS BY ROUTE OF EXPOSURE
 

To help public health professionals address the needs of persons
 
living or working near hazardous waste sites, the data in this section
 
are organized first by route of exposure -- inhalation, oral, and
 
dermal -- and then by health effect -- death, systemic, immunological,
 
neurological, developmental, reproductive, genotoxic, and carcinogenic
 
effects. These data are discussed in terms of three exposure periods -­
acute, intermediate, and chronic.
 

Levels of significant exposure for each exposure route and duration
 
(for which data exist) are presented in tables and illustrated in
 
figures. The points in the figures showing no-observed-adverse-effect
 
levels (NOAELs) or lowest-observed-adverse-effect levels (LOAELs)
 
reflect the actual doses (levels of exposure) used in the studies.
 
LOAELs have been classified into "less serious" or "serious" effects.
 
These distinctions are intended to help the users of the document
 
identify the levels of exposure at which adverse health effects start to
 
appear, determine whether or not the intensity of the effects varies
 
with dose and/or duration, and place into perspective the possible
 
significance of these effects to human health.
 

The significance of the exposure levels shown on the tables and
 
figures may differ depending on the user's perspective. For example,
 
physicians concerned with the interpretation of clinical findings in
 
exposed persons or with the identification of persons with the potential
 
to develop such disease may be interested in levels of exposure
 
associated with "serious" effects. Public health officials and project
 
managers concerned with response actions at Superfund sites may want
 
information on levels of exposure associated with more subtle effects in
 
humans or animals (LOAEL) or exposure levels below which no adverse
 
effects (NOAEL) have been observed. Estimates of levels posing minimal
 
risk to humans (Minimal Risk Levels, MRLs) are of interest to health
 
professionals and citizens alike.
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2. HEALTH EFFECTS
 

2.2.1 Inhalation Exposure
 

Health effects in humans following inhalation exposure to
 
nitrobenzene have been described. However, as described in this
 
section, these studies are limited in detail and technical content.
 
There are several reliable animal studies using this route of exposure.
 

Table 2-l and Figure 2-l describe the health effects observed in
 
laboratory animals associated with inhalation of nitrobenzene at varying
 
exposure levels and durations; the results are discussed below.
 

2.2.1.1 Death
 

No studies were located regarding lethal effects of nitrobenzene in
 
humans after inhalation exposure.
 

Strain and species differences in response to nitrobenzene exposure
 
were demonstrated by Medinsky and Irons (1985). At an exposure level of
 
125 ppm nitrobenzene, there was a 40% rate of lethality in Sprague-

Dawley (CD) rats and morbidity necessitating early sacrifice of all
 
B6C3Fl mice. Fischer-344 rats, however, tolerated this level for
 
2 weeks without any adverse clinical signs. The relevance of these
 
findings to human exposure is not known.
 

2.2.1.2 Systemic Effects
 

Hematological Effects. The outstanding toxic effect of inhalation
 
exposure to nitrobenzene is methemoglobinemia. When the iron component
 
of hemoglobin is converted from the ferrous state to the ferric state
 
(oxidized), the resultant methemoglobin is no longer capable of
 
releasing oxygen to the tissues of the body. This lowered oxygen
 
capacity, or hypoxia, is generally associated with fatigue, weakness
 
dyspnea, headache, and dizziness as oxygen-poor blood reaches the brain.
 
Even under normal conditions, some (1 to 4%) methemoglobin is formed in
 
the lungs as blood is oxygenated. Toxic or "secondary", methemoglobinemia
 
can occur following exposure to nitrobenzene and other
 
chemicals.
 

Methemoglobinemia has been reported in three-week-old twins (a male
 
and a female) (Stevens 1928) and in a 12-month-old girl (Stevenson and
 
Forbes 1942) exposed to nitrobenzene in insect exterminator sprays. In
 
each case, the exposure lasted several hours and the exposure level was
 
neither known nor estimated. Severe methemoglobinemia was reported in a
 
47-year-old woman who was occupationally exposed to nitrobenzene at
 
unmeasured levels for 17 months (Ikeda and Kita 1964).
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2. HEALTH EFFECTS
 

Increased levels of blood methemoglobin have been reported in rate
 
Exposed to nitrobenzene at levels as low as 10 ppm for two weeks
 
Medinsky and Irons 1985) or 5 ppm for 90 days (Hamm 1984).
 

Hepatic Effects. There is some evidence that the human liver is
 
Damaged after chronic inhaltion of nitrobenzene. The liver was
 
Enlarged and tender and the results of liver function tests were
 
Abnormal in a woman who was occupationally exposed to nitrobenzene for
 
17 months (exposure levels not measured or estimated) (Ikeda and Kita
 
1964).
 

Liver lesions reported in animals studies include hepatocyte
 
Necrosis in male Sprague-Dawley (CD) rats exposed to nitrobenzene at
 
35 ppm for 2 weeks (Medinsky and Irons 1985) and increased liver weight,
 
hepatocyte hyperlasia, and multinucleated hepatocytes in male B6C3F1
 
mice exposed to nitrobenzene at 16 ppm for 90 days (Hamm 1984).
 

Renal Effects. No studies were located regarding renal effects in
 
Human after inhalation exposure to nitrobenzene.
 

Dose-related increases in kidney weights were observed in
 
Fischer-344 rats (both sexes), but not in Sprague-Dawley (CD) rats
 
Exposed to nitrobenzene at 10 to 125 ppm for 14 days (Medinsky and Irons
 
1985). At 125 ppm, hydropic degeneration of the cortical tubular cells
 
was observed only in Sprague-Dawley rats (20% of males; 90% of females),
 
and hyaline nephrosis only in Fischer-344 rats (100% of males; 20% of
 
females). Renal effects reported in B6C3F1 mice in this study included
 
minimal to moderate multifocal degenerative changes in tubular
 
epithelium of males exposed to 35 ppm for 2 weeks. However, neither
 
hydropic degeneration of the cortical tubular cells nor hyaline
 
nephrosis was seen in mice even at the highest exposure level (125 ppm).
 
Using the same three animal models exposed to nitrobenzene at 5 to
 
50 ppm for 90 days, dose-related real lesions were observed in both rat
 
strains but not in mice (Hamm 1984).
 

Difference in species and possibly strain susceptibility to the
 
Renal effects of nitrobenzene exposure may exist, but their relevance to
 
The potential renal effects in humans is not clear. The occurrence of
 
Renal effects in male rats, but not female rats or mice of either sex,
 
in response to exposure to chemical toxicants is not unique to
 
nitrobenzene. These differences have also been found with exposure to
 
1,4,-dichlorobenzene, isophorone, and unleaded gasoline (Charbonneau and
 
Wwenberg 1988) and have been attributed to the production of high
 
Concentrations of the protein alpha-2µ-globulin in the kidneys of male
 
Rats, but not in female rats, mice, or humans. These observations
 
Suggest that the severe renal effects observed in male rats exposed to
 
Nitrobenzene will probably not occur in exposed humans.
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Other Systemic Effects. No studies were located regarding
 
cardiovascular, respiratory, gastrointestinal, musculoskeletal, dermal
 
or ocular effects in humans or animals after inhalation exposure to
 
nitrobenzene.
 

Dose-related splenic lesions have been reported to occur in B6C3Fl
 
mice exposed to nitrobenzene at 10 to 125 ppm for 14 days (Medinsky and
 
Irons 1985) and in F-344 and Sprague-Dawley (CD) rats at 5 to 50 ppm for
 
90 days (Hamm 1984). These lesions were described as sinusoidal
 
congestion, an increase in extramedullary hematopoiesis and hemosiderin­
laden macrophages infiltrating the red pulp, and the presence of
 
proliferative capsular lesions. The results of these studies suggest
 
that the spleen may also be a sensitive organ in cases of human
 
inhalation exposure to nitrobenzene.
 

2.2.1.3 Immunological Effects
 

No studies were located regarding immunological effects in humans
 
or animals after inhalation exposure to nitrobenzene. Splenic lesions
 
observed in studies in rats and mice (see Section 2.2.1.2) suggest that
 
potential immunologic effects may warrant further attention.
 

2.2.1.4 Neurological Effects
 

Neurological effects have been noted in the case of a woman who was
 
occupationally exposed to nitrobenzene for 17 months at an unknown
 
level. These effects included headache, nausea, vertigo, confusion, and
 
paresthesia (Ikeda and Kita 1964).
 

Neurologic signs were not observed in mice or rats exposed to 5,
 
16, or 50 ppm nitrobenzene in air for 90 days. These animals were
 
observed twice daily for clinical abnormalities (Hamm 1984).
 

When Sprague-Dawley (CD) rats and B6C3Fl mice were exposed to
 
nitrobenzene at 125 ppm daily for two weeks, damage to the hindbrain
 
(cerebellar peduncle), including bilateral cerebellar perivascular
 
hemorrhage and malacia (cell breakdown), was observed in 8/19 mice (both
 
sexes) and in 14/19 rats (both sexes) (Medinsky and Irons 1985). No
 
brain lesions were found in Fischer rats exposed to the same levels.
 
The reason for these strain differences under similar conditions is not
 
apparent.
 

2.2.1.5 Developmental Effects
 

No studies were located regarding developmental effects in humans
 
after inhalation of nitrobenzene.
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Studies in animals indicate that inhalation exposure to
 
nitrobenzene does not result in fetotoxic, embryotoxic or teratogenic
 
effects at concentrations up to 40 ppm in rats (Tyl et al. 1987) and up
 
to 100 ppm in rabbits (Bio/dynamics Inc. 1984). While the mean numbers
 
of resorption sites and percentage of resorptions/implants in rabbits
 
were higher in the 100 ppm group than in concurrent controls, these
 
parameters were within the historical control range. However, animal
 
data from these studies indicate that nitrobenzene is maternally toxic.
 
In rats, spleen weights increased in the mothers (dams) at 10 ppm, and
 
there was transient reduction in body weight gain in the 40 ppm group
 
(Tyl et al. 1987). In rabbits, maternal effects noted at 40 ppm and
 
above were increased methemoglobin levels and increased liver weights
 
(Bio/dynamics Inc. 1983). Since no developmental toxic effects occurred
 
in animals even at doses producing some maternal toxicity, developmental
 
toxicity may not be a major concern in humans.
 

2.2.1.6 Reproductive Effects
 

No studies were located regarding reproductive effects in humans
 
following inhalation exposure to nitrobenzene.
 

In a two-generation study in rats, nitrobenzene exposure (10 weeks)
 
resulted in a decrease in fertility indices at 40 ppm for F0 and F1
 

generations, while other reproductive parameters were unaltered (Dodd
 
et al. 1987). The study data suggested that the decrease was caused by
 
effects in males. Atrophy of seminiferous tubules, spermatocyte
 
degeneration and reduced testicular and epididymal weights were reported
 
in F0 and F1 generations. A five-fold increase (above levels during
 
exposure) in the fertility index was reported after 9 weeks of recovery
 
from inhalation exposure to nitrobenzene, but reversibility was not
 
studied histologically. Maternal toxicity was not observed. Hamm
 
(1984) reported that both F-344 and Sprague-Dawley (CD) rats exposed to
 
nitrobenzene at 50 ppm for 90 days had testicular atrophy, bilateral
 
degeneration of the seminiferous tubules, and a reduction in or absence
 
of mature sperm in the epididymis. No testicular lesions were observed
 
in B6C3Fl mice under the same exposure conditions.
 

The testicular effects observed in these studies suggest that
 
reproductive toxicity may be an area of concern for occupationally
 
exposed humans.
 

2.2.1.7 Genotoxic Effects
 

No studies were located regarding genotoxic effects in humans after
 
inhalation exposure to nitrobenzene.
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Cytogenetic analyses of lymphocytes in the peripheral blood or in
 
splenic blood of rats exposed to nitrobenzene at 5 to 50 ppm for 21 days
 
did not reveal an increase in sister chromatid exchange (SCE) or
 
chromosome breakage (Kligerman et al. 1983).
 

2.2.1.8 Cancer
 

No studies were located regarding cancer in humans or animals after
 
inhalation exposure to nitrobenzene.
 

2.2.2 Oral Exposure
 

Table 2-2 and Figure 2-2 describe the health effects observed in
 
laboratory animals associated with oral exposure to nitrobenzene at
 
varying levels and exposure durations.
 

2.2.2.1 Death
 

Although the early literature describes many "poisonings" and
 
deaths that were attributed to nitrobenzene ingestion, the lack of
 
reliable chemical identification makes it impossible to determine the
 
actual cause of death in some of these cases. In early case studies
 
that describe such events, nitrobenzene may have been identified only by
 
its odor; in other cases, aniline may have been identified in the
 
stomach contents. Because nitrobenzene is reduced to aniline by the
 
microflora in the intestines, the presence of aniline in the stomach may
 
more reasonably be attributed to the ingestion of aniline. In addition,
 
due to prompt and aggressive medical attention when these incidents have
 
occurred, most of the available case studies report that the victim has
 
survived. Therefore, firm conclusions cannot be drawn about the
 
potential lethal effects of nitrobenzene ingestion by humans.
 

An LD50 of 600 mg/kg in rats was reported by Smyth et al. (1969).
 

2.2.2.2 Systemic Effects
 

Hematological Effects. When nitrobenzene is ingested, the
 
outstanding systemic effect is methemoglobin formation. In this
 
condition, the blood releases less oxygen to the tissues and all general
 
body functions tend to be slowed down (WHO 1986). A latency period
 
(after ingestion and before any signs or symptoms occur) can be as short
 
as 30 minutes or as long as 12 hours. Usually, the higher the dose, the
 
shorter the latency period.
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No data are available to reliably estimate the level of human oral
 
exposure to nitrobenzene that results in methemoglobinemia. Two of the
 
case studies that were located indicate that some vague quantity, such
 
as a few drops or a partial spoonful, was swallowed and part of that
 
amount was vomited out before cyanosis and methemoglobinemia were
 
observed (Carter 1936; Leader 1932). Another study (Myslak et al. 1971)
 
estimated that a dose of 4.3 to 11 g was swallowed by a 19-year-old
 
woman, based on the urinary levels of p-nitrophenol.
 

Oral administration of nitrobenzene to rats and mice results in
 
methemoglobinemia (Goldstein et al. 1984a; Rickert 1984a).
 

The mouse is apparently more resistant to the methemoglobin forming
 
properties of nitrobenzene than are other species (Shimkin 1939; Smith
 
et al. 1967). The action of bacteria normally present in the small
 
intestine of the rat is an important element in the formation of
 
methemoglobin resulting from nitrobenzene exposure. Germ-free rats do
 
not develop methemoglobinemia when orally administered nitrobenzene
 
(Reddy et al. 1976). This observation leads to the speculation that a
 
nitrobenzene metabolite such as aniline (which is formed by the
 
bacterial reduction of nitrobenzene in the intestines of rats) may be
 
involved in methemoglobin formation in this species. In addition, diet
 
has been shown to play a role in the production of methemoglobin by
 
influencing the intestinal microflora. The presence of cereal-based
 
pectin in the diets of rats was shown to increase the ability of orally
 
administered nitrobenzene to induce methemoglobinemia (Goldstein et al.
 
1984a).
 

Other Systemic Effects. No studies were located regarding hepatic,
 
respiratory, cardiovascular, gastrointestinal, renal, musculoskeletal,
 
dermal, or ocular effects in humans or animals after oral exposure to
 
nitrobenzene.
 

2.2.2.3 Immunological Effects
 

No studies were located regarding immunological effects in humans
 
or animals after oral exposure to nitrobenzene.
 

2.2.2.4 Neurological Effects
 

Neurological effects following nitrobenzene ingestion by humans
 
have been reported as headache, nausea, vertigo, confusion,
 
unconsciousness, apnea and coma (Carter 1936; Leader 1932; Myslak et al.
 
1971). Levels of nitrobenzene associated with these effects cannot be
 
reliably estimated in most of the case studies from which these
 
descriptions have been derived.
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Brain pathology was reported after a single oral administration of
 
nitrobenzene at 550 mg/kg to male rats (Morgan et al. 1985).
 
Observations included petechial hemorrhages in the brain stem and
 
cerebellum and malacia (cell breakdown) in the fourth ventricle.
 

2.2.2.5 Developmental Effects
 

No studies were located regarding developmental effects in humans
 
or animals after oral exposure to nitrobenzene.
 

2.2.2.6 Reproductive Effects
 

No studies were located regarding reproductive effects in humans
 
after oral exposure to nitrobenzene.
 

No single or multigeneration reproduction studies in animals were
 
found. However, an acute systemic study in rats indicated that the
 
testes are sensitive to the toxic effects of nitrobenzene. Typical
 
signs included testicular degeneration and transiently decreased sperm
 
production following a single oral dose of 300 mg/kg (Levin et al.
 
1988).
 

Although no human studies were found and animal reproduction
 
studies have not been performed by oral administration, the testicular
 
degeneration in rats reported by Levin et al. (1988) suggests that
 
reproductive toxicity may be of concern in exposed humans.
 

2.2.2.7 Genotoxic Effects
 

No studies were located regarding genotoxic effects in humans after
 
oral exposure to nitrobenzene.
 

Rats gavaged with nitrobenzene at 200 or 500 mg/kg were tested for
 
unscheduled DNA synthesis in liver slices (Mirsalis et al. 1982). No
 
significant increase in DNA synthesis was found.
 

2.2.2.8 Cancer
 

No studies were located regarding cancer in humans or animals after
 
oral exposure to nitrobenzene.
 

2.2.3 Dermal Exposure
 

Cases of severe and nearly lethal toxic effects after dermal
 
exposure to aniline-based dyes have been reported as early as 1886.
 
These cases have involved mainly infants exposed to dye-stamped diapers
 
and persons wearing freshly dyed shoes. The resulting condition was
 
often termed "nitrobenzene poisoning", even though exposure to
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nitrobenzene did not necessarily occur. Several conclusions and
 
generalizations about the dermal absorption and toxic effects of
 
nitrobenzene, especially in infants, seem to have been based on these
 
studies which should more appropriately be considered as part of the
 
data base for aniline.
 

2.2.3.1 Death
 

No studies were ocated regarding death in humans after dermal
 
exposure to nitrobenzene.
 

Dermal applications of nitrobenzene to female C3H or male A-strain
 
mice resulted in the death of 12 of 18 and 8 of 10 animals, respectively
 
(Shimkin 1939). Although 2 or 3 applications were required for the C3H
 
mice, most animals were in partial collapse within 15 minutes and dead
 
by the third day. Most of the strain-A mice were dead within the first
 
day. The dermal dosage was not stated.
 

2.2.3.2 Systemic Effects
 

Hematological Effects. No studies were located regarding
 
hematological effects in humans after dermal exposure to nitrobenzene.
 
Dermal painting of C3H female or strain-A male mice with nitrobenzene
 
resulted in methemoglobinemia by 3 hours after application (Shimkin
 
1939).
 

Hepatic Effects. No studies were located regarding hepatic effects
 
in humans after dermal exposure to nitrobenzene. In mice dermally
 
exposed to nitrobenzene, the liver was the most severely affected organ.
 
There was diffuse necrosis in the outer two thirds of the lobules of the
 
liver (Shimkin 1939).
 

Renal Effects. No studies were located regarding renal effects in
 
humans after dermal exposure to nitrobenzene.
 

When mice were dermally painted with nitrobenzene for 1 to 3
 
applications, there was slight swelling of the glomeruli and tubular
 
epithelium upon histological examination (Shimkin 1939).
 

Other Systemic Effects. No studies were located regarding other
 
systemic effects (respiratory, cardiovascular, gastrointestinal,
 
musculoskeletal, splenic, dermal, ocular) in humans or animals after
 
dermal exposure to nitrobenzene.
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No studies were located regarding the following health effects in
 
humans or animals after dermal exposure to nitrobenzene.
 

2.2.3.3 Immunological Effects
 

2.2.3.4 Neurological Effects
 

2.2.3.5 Developmental Effects
 

2.2.3.6 Reproductive Effects
 

2.2.3.7 Genotoxic Effects
 

2.2.3.8 Cancer
 

2.3 TOXICOKINETICS
 

2.3.1 Absorption
 

2.3.1.1 Inhalation Exposure
 

In humans, nitrobenzene was well absorbed through the lung in the
 
one study located. During a 6-hour exposure of volunteers to
 
nitrobenzene, Salmowa et al. (1963) found absorption to average 80% (73
 
to 87%) in 7 men breathing 6 ppm nitrobenzene. The efficiency of uptake
 
was dose dependent, but showed considerable individual variation.
 

No studies were located regarding the uptake of nitrobenzene by
 
animals after inhalation exposure.
 

2.3.1.2 Oral Exposure
 

No studies were located regarding the uptake of nitrobenzene by
 
humans after oral exposure.
 

After oral administration of 250 mg/kg of nitrobenzene by stomach
 
tube to rabbits, Parke (1956) recovered 0.5% (1.3 mg) of the
 
administered dose of nitrobenzene from the exhaled air of the rabbit.
 
The amount of nitrobenzene in the blood was not measured. Unchanged
 
nitrobenzene in the urine was less than 0.1% (0.25 mg).
 

2.3.1.3 Dermal Exposure
 

The toxicokinetics of dermal exposure have not been well studied in
 
either humans or experimental animals. Piotrowski (1967) found that
 
approximately half of the dose of nitrobenzene was absorbed through the
 
skin when volunteers were exposed to either 1 or 5.5 ppm nitrobenzene in
 
air.
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In animal studies, nitrobenzene appears to be absorbed after dermal
 
application based on observations of toxic responses in the treated
 
animals. Shimkin (1939) reported that dermal painting of mice with
 
liquid nitrobenzene (dose not stated) resulted in the death of most test
 
animals after 1 to 3 applications. Dermal exposure of rabbits to
 
nitrobenzene (dose not stated) for 22 to 205 days resulted in greater
 
neural damage than did intravenous exposure (Matsumaru and Yoshida
 
1959). Administration of alcohol (not further identified) by stomach
 
tube following exposure to nitrobenzene resulted in neurotoxicity by
 
both routes of exposure.
 

2.3.2 Distribution
 

2.3.2.1 Inhalation Exposure
 

No studies of the distribution of nitrobenzene or its metabolites
 
after inhalation exposure by humans or animals were found in the
 
literature.
 

2.3.2.2 Oral Exposure
 

Radiolabeled nitrobenzene has been followed after oral
 
administration in a number of studies in rats and mice (Goldstein and
 
Rickert 1984; Levin and Dent 1982a; Morgan et al. 1985). In summary,
 
these studies have shown that nitrobenzene is reduced to nitrosobenzene,
 
phenylhydroxylamine, and aniline by the bacteria of the intestine.
 
Metabolism of nitrobenzene resulted on covalent binding to the hepatic
 
microsomes. Nitrosobenzene and phenylhydroxylamine were bound to the
 
hemoglobin. Unaltered nitrobenzene was recovered from the brain at a
 
rate of 0.02% of the administered dose. The subcellular site of
 
nitrobenzene metabolism was not found. The major urinary metabolites
 
were p-aminophenol and p-nitrophenol together with the sulfate and
 
glucuronide conjugates.
 

In a study of rats that received radiolabeled nitrobenzene by
 
gavage, it became bound to the tissues after the first day according to
 
the following indices [mmol/mol Hb/dose (mmol/kg)]: blood-229,
 
liver-129, kidney-204, lung-62. BY day 7, the same indices were: 134,
 
26.5, 48, 29. After the first day, 50% of the dose (radioactivity)
 
appeared in the urine and 4% in the feces. After the fifth day, 65% of
 
the dose had appeared in the urine and 16% appeared in the feces
 
(Albrecht and Neumann 1985). These studies confirmed the observation of
 
Rickert et al. (1983), that the excretion of nitrobenzene is delayed.
 
The binding indices also indicated that 4 to 5 times as much
 
nitrosobenzene is formed from nitrobenzene as from an equal amount of
 
aniline.
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2.3.2.3 Dermal Exposure
 

No studies were located regarding the distribution of nitrobenzene
 
or its metabolites after dermal exposure.
 

2.3.3 Metabolism
 

The covalent metabolism and binding of nitrobenzene to hemoglobin
 
was studied by Albrecht and Neumann (1985). When Wistar rats were
 
administered 25 mg/kg radiolabeled nitrobenzene by gavage,
 
biotransformation was first seen in the intestine where nitrobenzene was
 
sequentially reduced to nitrosobenzene, phenylhydroxylamine and aniline.
 
These findings were also reported in Fischer-344 rats (Levin and Dent
 
1982a). The observation that germ-free rats do not develop
 
methemoglobinemia when administered nitrobenzene (Reddy et al. 1976) has
 
led to the speculation that a nitrobenzene metabolite such as aniline
 
may be involved in methemoglobinemia formation in this species. The
 
nitrobenzene metabolites, nitrosobenzene and phenylhydroxylamine have
 
been found to bind with hemoglobin in the blood of orally exposed mice
 
and rats (Goldstein and Rickert 1984).
 

2.3.4 Excretion
 

2.3.4.1 Inhalation Exposure
 

Urinary excretion rates of p-nitrophenol were found in 7 volunteers
 
who had inhaled 6 ppm nitrobenzene for 6 hours (Salmowa et al. 1963).
 
The rate of urinary elimination varied considerably from individual to
 
individual, but showed a general dose dependence at 1 to 6 ppm
 
nitrobenzene. In general, excretion was most rapid during the first two
 
hours and then leveled off. In some cases, p-nitrophenol could be
 
detected for as long as 100 hours after exposure to 6 ppm for 6 hours.
 
In a 47-year-old woman who had been occupationally exposed to
 
nitrobenzene for 17 months, p-nitrophenol and p-aminophenol were found
 
in the urine (Ikeda and Kita 1964).
 

2.3.4.2 Oral Exposure
 

After oral exposure to nitrobenzene, the major route of excretion
 
is the urine. In most cases of human poisoning, the metabolites
 
excreted in the urine are p-aminophenol and p-nitrophenol (Myslak et al.
 
1971; Von Oettingen 1941). Five days after oral administration to rats,
 
Albrecht and Neumann (1985) found 65% of the administered dose
 
(25 mg/kg) in the urine and 16% in the feces.
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2.3.4.3 Dermal Exposure
 

A unique apparatus was developed to measure skin absorption from
 
the nitrobenzene vapor in the air without inhalation of nitrobenzene
 
(Piotrowski 1967). At 1 ppm, about 8 mg is absorbed through the skin
 
and about 20% is excreted in the urine the first day.
 

2.4 RELEVANCE TO PUBLIC HEALTH
 

Studies in animals, combined with observations in humans, indicate
 
that the principal adverse health effects associated with short-term
 
inhalation or oral exposure to nitrobenzene are methemoglobinemia,
 
neurological effects, and liver injury. Data related to dermal exposure
 
and to long-term exposure by any route are not considered sufficient to
 
clearly assess the potential effects.
 

Death. Accidental poisonings and deaths in humans that were
 
attributed to the ingestion of nitrobenzene have been reported; but as
 
discussed in Section 2.2.2.1, these studies usually lack clear chemical
 
identification of nitrobenzene as the ingested substance. In those
 
inhalation case studies (Stevens 1928; Stevenson and Forbes 1942) and
 
oral case studies (Carter 1936; Leader 1932; Myslak et al. 1971) in
 
which the patients were apparently near death due to severe
 
methemoglobinemia, termination of exposure and prompt medical
 
intervention resulted in gradual improvement and recovery. Data
 
relating to dermal exposure to nitrobenzene, as discussed previously in
 
Section 2.2.3, are questionable since there may have been exposure to
 
aniline-based dyes and little or no exposure to nitrobenzene. Data in
 
animals indicate that nitrobenzene can be lethal via oral, inhalation or
 
dermal exposure. Although human exposure to sufficiently high
 
quantities of nitrobenzene can probably be lethal via any route of
 
exposure, it is considered unlikely that levels of exposure high enough
 
to cause death would occur except in cases of industrial accidents.
 

Systemic Effects. The chief systemic effect associated with human
 
exposure to nitrobenzene is methemoglobinemia. However, it is difficult
 
to locate clear evidence of this effect, since nitrobenzene was
 
identified only by its odor in several early case studies.
 
Methemoglobinemia was reported to occur in twin 3-week-old babies
 
(Stevens 1928), in a 12-month-old girl (Stevenson and Forbes 1942), and
 
in a 47-year-old woman (Ikeda and Kita 1964), all of whom were exposed
 
to nitrobenzene via inhalation. However, levels of exposure were
 
neither known nor estimated. In addition, the compound to which the
 
12-month-old girl was exposed also contained kerosene, turpentine, and
 
oil of lilacine. The 3-week-old twins were exposed to nitrobenzene in a
 
toilet deodorant called "Creco". No other ingredients were stated in
 
the study. Oral exposure to nitrobenzene at unspecified amounts has
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also resulted in methemoglobinemia (Carter 1936; Leader 1932; Myslak
 
et al. 1971). There is no clear evidence that dermal exposure to
 
nitrobenzene results in methemoglobinemia in humans. Reports of
 
methemoglobinemia resulting in dermal contact with dyes allegedly
 
containing nitrobenzene are complicated by the early confusion in
 
nomenclature for aniline and nitrobenzene.
 

Methemoglobinemia has also been reported in mice and rats exposed
 
to nitrobenzene via inhalation (Hamm 1984) and in rats and mice exposed
 
orally (Goldstein et al. 1984a; Rickert 1984a). Dermal painting studies
 
in mice resulted in the onset of methemoglobinemia within 3 hours after
 
nitrobenzene application (level not stated) (Shimkin 1939). This
 
finding suggests that methemoglobinemia may also occur in dermally
 
exposed humans.
 

Liver effects have been reported in both humans and animals exposed
 
to nitrobenzene. Hepatic enlargement and tenderness, jaundice, and
 
altered serum chemistries were reported in a 47-year-old woman who had
 
been occupationally exposed to nitrobenzene for 17 months (Ikeda and
 
Kita 1964). The authors considered these changes to be related to
 
increased destruction of hemoglobin and enlargement of the spleen.
 
Liver effects observed in animals following nitrobenzene exposure are
 
hepatocyte necrosis in rats (Medinsky and Irons 1985) and increased
 
liver weight, hepatocyte hyperplasia, and multinucleated hepatocytes in
 
mice (Hamm 1984). Hepatic effects have not been reported in oral
 
studies. Dermal painting studies in mice resulted in diffuse necrosis
 
in the outer two-thirds of the lobules of the liver (Shimkin 1939).
 

There are no data on renal effects in humans exposed to
 
nitrobenzene by any route. In rats, strain-related differences in renal
 
effects have been reported as a result of inhalation exposure to
 
nitrobenzene (Hamm 1984; Medinsky and Irons 1985). Observed effects
 
have included increased kidney weights, hydropic degeneration of the
 
cortical tubules and hyaline nephrosis. Renal effects have not been
 
reported in studies of animals that were orally exposed to nitrobenzene.
 
In dermal painting studies in mice, slight swelling of the glomeruli and
 
tubular epithelium were reported (Shimkin 1939). These findings suggest
 
that renal damage may also occur in exposed humans.
 

Splenic lesions reported in inhalation studies in mice and rats
 
have included sinusoidal congestion, an increase in extramedullary
 
hematopoiesis and hemosiderin-laden macrophages invading the red pulp,
 
and the presence of proliferative capsular lesions (Hamm 1984; Medinsky
 
and Irons 1985). These findings suggest that the spleen may also be a
 
target organ during human inhalation exposure to nitrobenzene.
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Little information is available on the effects of inhalation, oral
 
or dermal exposure of humans or animals to nitrobenzene on the
 
respiratory, cardiovascular or musculoskeletal systems or on the skin or
 
eyes.
 

Immunological Effects. No studies were located regarding
 
immunologic effects in humans or animals after inhalation, oral, or
 
dermal exposure to nitrobenzene. Splenic lesions reported in rodent
 
inhalation studies (Hamm 1984; Medinsky and Irons 1985) suggest that
 
this may be an area of potential concern.
 

Neurological Effects. Neurotoxic symptoms reported in humans after
 
inhalation exposure to nitrobenzene have included headache, confusion,
 
vertigo and nausea (Ikeda and Kita 1964); effects in orally exposed
 
persons have also included those symptoms as well as apnea and coma
 
(Carter 1936; Leader 1932; Myslak et al. 1971). Studies in animals
 
exposed via inhalation have shown morphological damage to the hindbrain
 
(cerebellar peduncle) (Medinsky and Irons 1985). Damage to the
 
brainstem, cerebellum and fourth ventricle was observed in orally
 
exposed animals. Thus, it is possible that similar neurological changes
 
may occur in humans as a result of nitrobenzene exposure.
 

Developmental Effects. No studies of developmental effects in
 
humans resulting from inhalation, oral or dermal exposure to
 
nitrobenzene have been reported. Studies conducted via inhalation
 
exposure did not result in fetotoxic or teratogenic effects in rats or
 
rabbits (Bio/dynamics 1984; Tyl et al. 1987). No studies have been
 
conducted using the oral or dermal routes. Developmental effects are
 
not expected to be of concern to humans exposed to the typical levels in
 
the environment or in occupational settings.
 

Reproductive Effects. The effects of nitrobenzene on reproduction
 
have not been studied in humans by inhalation, oral or dermal routes of
 
exposure. In rats, inhalation of nitrobenzene has resulted in
 
testicular degeneration and decreased sperm levels (Dodd et al. 1987;
 
Hamm 1984). Cessation of spermatogenesis, followed by a slow and
 
incomplete recovery, was observed in rats following a single oral dose
 
of nitrobenzene (Levin et al. 1988). These findings suggest that
 
reproductive effects may also be an area of concern for men exposed to
 
nitrobenzene in occupational settings.
 

Genotoxic Effects. The genotoxicity of nitrobenzene has been
 
investigated in both in vitro and in vivo studies. The results of
 
in vitro studies are presented in Table 2-3. In vivo studies are
 
described in Sections 2.2.1.7 and 2.2.2.7. The results of these studies
 
are generally negative and do not suggest potential human health
 
concerns.
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Cancer. No studies were located regarding carcinogenic potential
 
in humans or animals after inhalation, oral, or dermal exposure to
 
nitrobenzene.
 

2.5 BIOMAREERS OF EXPOSURE AND EFFECT
 

Biomarkers are broadly defined as indicators signaling events in
 
biologic systems or samples. They have been classified as markers of
 
exposure, markers of effect, and markers of susceptibility (NAS/NRC
 
1989).
 

A biomarker of exposure is a xenobiotic substance or its
 
metabolite(s) or the product of an interaction between a xenobiotic
 
agent and some target molecule or cell that is measured within a
 
compartment of an organism (NAS/NRC 1989). The preferred biomarkers of
 
exposure are generally the substance itself or substance-specific
 
metabolites in readily obtainable body fluid or excreta. However,
 
several factors can confound the use and interpretation of biomarkers of
 
exposure. The body burden of a substance may be the result of exposures
 
from more than one source. The substance being measured may be a
 
metabolite of another xenobiotic (e.g., high urinary levels of phenol
 
can result from exposure to several different aromatic compounds).
 
Depending on the properties of the substance (e.g., biologic half-life)
 
and environmental conditions (e.g., duration and route of exposure), the
 
substance and all of its metabolites may have been eliminated from the
 
body by the time biologic samples can be taken. It may be difficult to
 
identify individuals exposed to hazardous substances that are commonly
 
found in body tissues and fluids (e.g., essential mineral nutrients such
 
as copper, zinc and selenium). Biomarkers of exposure to nitrobenzene
 
are discussed in Section 2.5.1.
 

Biomarkers of effect are defined as any measurable biochemical,
 
physiologic, or other alteration within an organism that, depending on
 
magnitude, can be recognized as an established or potential health
 
impairment or disease (NAS/NRC 1989). This definition encompasses
 
biochemical or cellular signals of tissue dysfunction (e.g., increased
 
liver enzyme activity or pathologic changes in female genital epithelial
 
cells), as well as physiologic signs of dysfunction such as increased
 
blood pressure or decreased lung capacity. Note that these markers are
 
often not substance specific. They also may not be directly adverse,
 
but can indicate potential health impairment (e.g., DNA adducts).
 
Biomarkers of effects caused by nitrobenzene are discussed in
 
Section 2.5.2.
 

A biomarker of susceptibility is an indicator of an inherent or
 
acquired limitation of an organism's ability to respond to the challenge
 
of exposure to a specific xenobiotic. It can be an intrinsic genetic or
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other characteristic or a preexisting disease that results in an
 
increase in absorbed dose, biologically effective dose, or target tissue
 
response. If biomarkers of susceptibility exist, they are discussed in
 
Section 2.7, "POPULATIONS THAT ARE UNUSUALLY SUSCEPTIBLE."
 

2.5.1 	Biomarkers Used to Identify and/or Quantify Exposure to

 Nitrobenzene
 

The presence of p-nitrophenol in the urine can be used to indicate
 
exposure to nitrobenzene (Ikeda and Kita 1964). Measurement of
 
p-nitrophenol, however, cannot be used to determine the level of
 
nitrobenzene exposure or if harmful effects can be expected to occur.
 
The nitrobenzene metabolites, nitrosobenzene and phenylhydroxylamine,
 
have been found to bind with hemoglobin in the blood of orally exposed
 
mice and rats (Goldstein and Rickert 1984). The presence of these
 
hemoglobin adducts in human blood may also serve as a potential
 
biomarker of exposure to nitrobenzene.
 

2.5.2 	Biomarkers Used to Characterize Effects Caused by Nitrobenzene
 

The presence of methemoglobinemia can indicate exposure to
 
nitrobenzene as well as to any of several other toxic substances.
 
Therefore, this condition in itself cannot be used as a biomarker of
 
effect for nitrobenzene.
 

2.6 INTERACTIONS WITH OTHER CHEMICALS
 

Synergism between orally administered nitrobenzene and six other
 
common industrial compounds was demonstrated in rat studies using dea
 
as the end point (Smyth et al. 1969). The combinations of chemicals
 
showed increased lethality that varied from 20 to 47%. The compounds
 
were: formalin, 20%; butyl ether, 28%; aniline, 32%; dioxane, 39%;
 
acetone, 47%; and carbon tetrachloride, 47%.
 

Alcohol also has the potential for enhancing the toxicity of
 
nitrobenzene; however the toxicokinetic mechanism is not known. It is
 
clear, however, that alcohol does not simply enhance the absorption of
 
nitrobenzene. When alcohol was given orally and nitrobenzene is given
 
intravenously, there was increased toxicity in rabbits. Alcohol also
 
enhanced the neural toxicity of nitrobenzene in rabbits when
 
nitrobenzene was applied to the skin (Matsumaru and Yoshida 1959).
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2.7 POPULATIONS THAT ARE UNUSUALLY SUSCEPTIBLE
 

Populations that are considered unusually susceptible to
 
nitrobenzene toxicity are those groups that are susceptible to
 
methemoglobinemia. The newborn infant is especially vulnerable to
 
methemoglobinemia due to the following factors (Goldstein et al. 1969;
 
Von Oettingen 1941):
 

1. 	 Fetal hemoglobin, which remains in the blood for some time
 
after birth, is more prone to conversion to methemoglobin than
 
is adult hemoglobin.
 

2. 	 Umbilical cord blood is deficient in the enzyme glucose-6­
phosphate dehydrogenase and thus cannot readily convert the
 
methemoglobin that is formed "naturally" back to hemoglobin as
 
is readily done in adults.
 

A condition described as "hereditary methemoglobinemia" may result
 
from a genetic defect (Goldstein et al. 1969). The enzyme methemoglobin
 
reductase is absent and persons are hypersensitive to any substances
 
such as nitrite or aniline derivatives capable of producing
 
methemoglobinemia. The trait is inherited as an autosomal recessive
 
allele. Thus either sex may exhibit the trait which is ordinarily
 
detected by the presence of cyanosis at birth. Such individuals would
 
be extremely sensitive to the effects of nitrobenzene.
 

A more common genetic defect was also described in which the enzyme
 
glucose-6-phosphate dehydrogenase has decreased activity (Goldstein
 
et al. 1969). The pattern of inheritance of this trait is linked to one
 
of several alleles on the X chromosome. The phenotype is expressed as
 
an incomplete dominant trait. Thus, female heterozygotes are not known
 
to have severely depressed enzyme levels and males may have a wide range
 
of activity. These phenotypes express a wide range of levels of
 
glucose-6-phosphate dehydrogenase enzyme in the red blood cell. This
 
defect is ordinarily without adverse effects. It is only when these
 
individuals are challenged with compounds that oxidatively stress
 
erythrocytes (such as primaquine) that there is a hemolytic response.
 
Reactors to primaquine (and fava beans) are found predominantly among
 
groups that live in or trace their ancestry to malaria-hyperendemic
 
areas such as the Mediterranean region or Africa. The incidence of
 
"primaquine sensitivity" among Kurds, a Middle Eastern population, is
 
53%. Among American blacks, the incidence is 13%. Thus, individuals
 
already exhibiting primaquine sensitivity would be expected to be more
 
vulnerable to the additional hemolytic crisis that often follows 5 to
 
6 days after nitrobenzene exposure (Gosselin et al. 1984; Von Oettingen
 
1941).
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The presence of susceptible populations in the workplace is
 
obviously of great concern since chronic and potentially high levels of
 
exposure to nitrobenzene combined with a genetic predisposition toward
 
methemoglobinemia can put certain individuals at very high risk (Linch
 
1974).
 

2.8 ADEQUACY OF THE DATABASE
 

Section 104(i)(5) of CERCLA, directs the Administrator of ATSDR (in
 
consultation with the Administrator of EPA and agencies and programs of
 
the Public Health Service) to assess whether adequate information on the
 
health effects of nitrobenzene is available. Where adequate information
 
is not available, ATSDR, in conjunction with the National Toxicology
 
Program (NTP), is required to assure the initiation of a program of
 
research designed to determine the health effects (and techniques for
 
developing methods to determine such health effects) of nitrobenzene.
 

The following categories of possible data needs have been
 
identified by a joint team of scientists from ATSDR, NTP, and EPA. They
 
are defined as substance-specific informational needs that, if met would
 
reduce or eliminate the uncertainties of human health assessment. In
 
the future, the identified data needs will be evaluated and prioritized,
 
and a substance-specific research agenda will be proposed.
 

2.8.1 Existing Information on Health Effects of Nitrobenzene
 

The existing data on health effects of inhalation, oral, and dermal
 
exposure of humans and animals to nitrobenzene are summarized in
 
Figure 2-3. The purpose of this figure is to illustrate the existing
 
information concerning the health effects of nitrobenzene. Each dot in
 
the figure indicates that one or more studies provide information
 
associated with that particular effect. The dot does not imply anything
 
about the quality of the study or studies. Gaps in this figure should
 
not be interpreted as "data needs" information.
 

2.8.2 Identification of Data Needs
 

Acute-Duration Exposure. Case studies of acute-duration human
 
exposure to nitrobenzene via inhalation and the oral route indicate that
 
methemoglobinemia is the major adverse effect found in humans. No data
 
are available on human dermal exposure. Acute-duration studies
 
conducted in rats via the inhalation and oral routes and in mice via the
 
dermal route have also resulted in methemoglobinemia as well as various
 
other systemic, neurological, and testicular effects. The data are not
 
considered to be appropriate to use in calculating an MRL by any route
 
because species- and strain-related differences in sensitivity have been
 
noted in intermediate-duration inhalation studies in mice and rats, and
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it is possible that human sensitivity to methemoglobin formation may
 
greatly exceed that of the test animals used in these studies. The
 
available toxicokinetic data do not provide insight as to the possible
 
reasons for the observed differences in rodent studies. However, there
 
is no apparent need for further animal studies by any route of exposure
 
for this duration period.
 

Intermediate-Duration Exposure. No data are available on human
 
exposure to nitrobenzene by any route for this duration period. Data in
 
animals are limited to two inhalation studies in rodents. Effects in
 
rats included methemoglobinemia, renal and hepatic necrosis, splenic
 
lesions, and testicular necrosis. Methemoglobinemia and adrenal lesions
 
were reported in mice. The available data were not considered to be
 
adequate to use in calculating an MEL for this route, because the
 
database is very limited and because the different levels of sensitivity
 
observed in mice and rats suggest that relative human sensitivity should
 
be closely studied before calculations of MELs are attempted. There are
 
no toxicokinetic data that provide a potential explanation for these
 
differences. However, there is no apparent need for further inhalation
 
studies for this duration period. A 90-day study via the oral route may
 
provide useful information. However, the available information does not
 
clearly establish that oral or dermal exposure to nitrobenzene are
 
likely to occur in humans.
 

Chronic-Duration Exposure and Cancer. Available chronic-duration
 
studies in humans are limited to a case report of a woman who was
 
occupationally exposed to nitrobenzene and developed methemoglobinemia
 
and hepatic and neurological effects. Chronic duration data in animals
 
are limited to a two-generation inhalation study in rats that resulted
 
in testicular lesions. No studies using the oral or dermal routes have
 
been located and the available data are not considered appropriate to
 
use in calculating an MRL by any route. The results of a Chemical
 
Industry Institute of Toxicology (CIIT) inhalation bioassay using rats
 
and mice which was completed in 1987 should provide useful information
 
on the potential risks associated with chronic exposure to nitrobenzene
 
in the vicinity of hazardous waste sites and, to a greater extent, in
 
the workplace. Although nitrobenzene appears to be well absorbed via
 
the oral route, there are no data to suggest that long-term oral
 
exposure would be of concern in these populations. Dermal absorption of
 
nitrobenzene in the air has been demonstrated in toxicokinetic studies
 
in humans. Based on the results of the CIIT two-year inhalation study,
 
chronic-duration dermal application studies may be useful in assessing
 
the possible effects of dermal contact with nitrobenzene in the
 
workplace.
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There are no available carcinogenicity data in humans or animals
 
using any route of exposure. Data from the CIIT inhalation bioassay
 
should provide valuable information on the carcinogenic potential of
 
airborne nitrobenzene. There is currently no apparent need for studies
 
using the oral or dermal route. However, as stated above, the results
 
of the CIIT bioassay may provide insight into the possible need for
 
dermal application studies.
 

Genotoxicity. There are no data on the genotoxic potential of
 
nitrobenzene in humans exposed via any route. The results of in vivo
 
tests in rats exposed via inhalation or orally and in vitro tests have
 
generally been negative and do not suggest a potential concern for
 
exposed humans. Further studies in this area do not appear to be
 
needed.
 

Reproductive Toxicity. There are no data on the potential
 
reproductive effects in humans exposed to nitrobenzene via any route.
 
Data in animals include a 90-day inhalation study in rats that resulted
 
in testicular degeneration, a two-generation inhalation study in rats
 
that resulted in testicular lesions and decreased fertility, and a
 
single-dose gavage study in rats that resulted in testicular necrosis
 
and temporarily decreased sperm levels. These data suggest that similar
 
information on men exposed to nitrobenzene in the area of hazardous
 
waste sites or in the workplace would be extremely useful. In addition,
 
in any further animal studies conducted by any route and for any
 
duration period, data on reproductive organ histopathology resulting
 
from nitrobenzene exposure as well as toxicokinetic data on the
 
distribution of nitrobenzene to the reproductive organs would be
 
valuable information.
 

Developmental Toxicology. There are no available data on the
 
developmental effects of nitrobenzene in humans exposed via any route
 
for any duration period. The results of inhalation studies in rats and
 
rabbits have been negative. There is no apparent need for further
 
studies in this area. However, if any further developmental studies are
 
conducted, it would be useful to have data on animals exposed earlier in
 
the gestation period than day 6 (which was the earlier gestation day in
 
the two available inhalation studies).
 

Immunotoxicity. No studies were located relating to immunotoxic
 
effects in humans or animals exposed to nitrobenzene via any route.
 
However, splenic lesions have been reported in mice and rats exposed to
 
nitrobenzene via inhalation in both acute- and intermediate-duration
 
studies. These results suggest that a battery of immune function tests
 
in animals exposed via inhalation and orally would provide useful
 
information. The results of the CIIT bioassay, however, may provide
 
some information on this end point.
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Neurotoxicity. Neurological effects including headache, nausea,
 
vertigo, and confusion have been reported in case studies of humans
 
exposed to nitrobenzene by inhalation. In orally exposed persons, apnea
 
and coma have additionally been reported. No data are available in
 
humans exposed via the dermal route. In animal studies, brain lesions
 
have been observed in mice and rats exposed by inhalation and in rats
 
that received a single oral dose. No data are available in animals
 
exposed via the dermal route. Toxicokinetic studies in mice and rats
 
provide evidence that nitrobenzene is distributed to brain tissue. Both
 
the human and animal data provide clear evidence that nitrobenzene is a
 
neurotoxic substance. Further studies in this area do not appear to be
 
needed. In addition, results of the CIIT two-year bioassay may provide
 
further information on this end point.
 

Epidemiological and Human Dosimetry Studies. No epidemiological
 
studies were located regarding human health effects from nitrobenzene
 
exposure. Studies of occupationally exposed populations would probably
 
provide useful information. Areas of major interest would include
 
methemoglobin levels, effects on reproductive function, immunological
 
status, and neurobehavioral function.
 

Biomarkers of Exposure and Effect. The presence of p-nitrophenol
 
in urine serves as a satisfactory biomarker of nitrobenzene exposure.
 
Because nitrobenzene metabolites, nitrosobenzene and
 
phenylhydroxylamine, bind to hemoglobin in the blood of rats and mice,
 
the presence of these hemoglobin adducts in human blood may also serve
 
as biomarkers of nitrobenzene exposure. More information on this
 
possibility would be useful.
 

The presence of increased levels of methemoglobin can indicate
 
exposure to nitrobenzene as well as to any of several other toxic
 
substances. Therefore, methemoglobinemia by itself would not serve as a
 
satisfactory biomarker of effect for nitrobenzene. Further study in
 
this area does not appear to be potentially useful.
 

Absorption, Distribution, Metabolism, Excretion. Absorption data for
 
humans exposed to nitrobenzene via inhalation and the dermal route
 
indicate that it is efficiently absorbed by these routes. Although
 
absorption studies using the oral route have not been located for
 
humans, the available case studies suggest that it can also be absorbed
 
via ingestion. However, quantitative data are lacking. Similarly, in
 
animals, quantitative absorption studies using inhalation or dermal
 
application are not available, but the available toxicity data using
 
these routes suggest that absorption does take place. This does not
 
appear to be a priority area for further research.
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No distribution data are available for humans exposed to
 
nitrobenzene via any route. Data in animals are limited to oral studies
 
in rats and mice that indicate that there is some distribution to the
 
blood, liver, brain, kidney, and lung. Not all tissues have been
 
analyzed in these studies. Comprehensive distribution studies for
 
nitrobenzene administered to mice and rats via all three routes would be
 
very helpful in predicting the organ systems at potential risk in
 
exposed humans.
 

Metabolism data available for nitrobenzene suggest that species
 
and/or strain differences in toxicity may be related to the metabolic
 
activities of intestinal bacteria that convert it to its toxic
 
metabolite aniline. This is an area in which further study may be
 
helpful in making comparisons of human sensitivity with that of other
 
animals and thus may aid in the interpretation of the currently
 
available animal studies and their relevance to humans.
 

Excretion data are available for humans exposed to nitrobenzene via
 
the inhalation, oral, and dermal routes. The available animal studies
 
have used the oral route. Urine appears to be the major route of
 
excretion, although this has not been clearly established. There is no
 
apparent need for further studies in this area.
 

Comparative Toxicokinetics. Species and strain differences in
 
response to nitrobenzene exposure have been noted in inhalation studies
 
using mice and rats. The reason for these differences and the
 
toxicokinetics involved are not understood. Additional toxicokinetic
 
studies in species other than rodents and attempts to estimate the
 
sensitivity of humans relative to these test species would be valuable
 
aids in interpreting the results of available toxicity studies and in
 
understanding individual differences noted in response to nitrobenzene
 
exposure.
 

2.8.3 On-going Studies
 

The CIIT has been preparing a final report on their two-year
 
carcinogenicity studies of nitrobenzene administered to mice and rats
 
via inhalation. No other research activities on nitrobenzene are known
 
to be currently in progress.
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3. CHEMICAL AND PHYSICAL INFORMATION
 

3.1 CHEMICAL IDENTITY
 

Table 3-1 lists common synonyms, trade names and other pertinent
 
identification information for nitrobenzene.
 

3.2 PHYSICAL AND CHEMICAL PROPERTIES
 

Table 3-2 lists important physical and chemical properties of
 
nitrobenzene.
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4 PRODUCTION, IMPORT, USE, AND DISPOSAL
 

4.1 PRODUCTION
 

Nitrobenzene is produced commercially by the exothermic nitration
 
of benzene with fuming nitric acid in the presence of a sulfuric acid
 
catalyst at 50 to 65°C. The crude nitrobenzene is passed through
 
washer-separators to remove residual acid and is then distilled to
 
remove benzene and water.
 

There has been a gradual increase in nitrobenzene production volume
 
in the United States from 73,600 metric tons (kkg) in 1960 to
 
434,900 kkg in 1986. Based on increased production capacity and
 
increased production of aniline (the major end-product of nitrobenzene)
 
in 1987, it is likely that nitrobenzene production volume will continue
 
to increase (Collins et al. 1982; Dunlap 1981; EPA 1985a; SRI 1985,
 
1986, 1987, 1988; USITC 1987, 1988).
 

Currently, there are four United States producers of nitrobenzene:
 
E. I. DuPont de Nemours 6 Company, Inc., Beaumont, Texas; Mobay
 
Corporation, New Martinsville, West Virginia; First Chemical
 
Corporation, Pascagoula, Mississippi; and ICI Americas, Inc., Geismar,
 
Louisiana (SRI 1988; USITC 1988).
 

4.2 IMPORT
 

No recent data documenting import or export volumes of nitrobenzene
 
were located. However, it is estimated that these quantities are
 
negligible, based on the 1978 import volume of 38 kkg and 1980 export
 
volume of 36 kkg, which represent less than 1% of United States
 
production during those years (Collins et al. 1982).
 

4.3 USE
 

The primary use of nitrobenzene is in the captive production of
 
aniline, with about 97.5% of nitrobenzene production consumed in this
 
process. The major use of aniline is in the manufacture of
 
polyurethanes. Nitrobenzene is also used as a solvent in petroleum
 
refining, in the manufacture of cellulose ethers and acetate, and in
 
Friedel-Crafts reactions to hold the catalyst in solution. It is also
 
used in the synthesis of other organic compounds including
 
acetaminophen, which is an over-the-counter analgesic commonly known as
 
Tylenol. 

Nitrobenzene is used as a flavoring agent, a perfume for soaps and
 
as a solvent for shoe dyes (Collins et al. 1982; Dunlap 1981; EPA 1985a;
 
HSDB 1988).
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4.4 DISPOSAL
 

Because nitrobenzene is listed as a hazardous substance, disposal
 
of waste nitrobenzene is controlled by a number of federal regulations
 
(see Chapter 7). Land disposal restrictions (treatment standards) apply
 
to wastes containing nitrobenzene. These wastes may be chemically or
 
biologically treated or incinerated by the liquid injection or fluidized
 
bed methods (EPA 1988a, 1989; HSDB 1988). No data were located on the
 
amounts of nitrobenzene disposed of by any of these methods. The EPA
 
does not believe that releases of nitrobenzene to the environment are
 
substantial (EPA 1984).
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5. POTENTIAL FOR HUMAN EXPOSURE
 

5.1 OVERVIEW
 

Human exposure to nitrobenzene results from releases to air and
 
wastewater from industrial sources and from nitrobenzene as an air
 
pollutant in ambient air, especially in urban areas. Its low volatility
 
and weak sorption on soil suggest that surface waters and groundwater
 
could be a route of exposure for the general population. Exposure is
 
mitigated by environmental degradation, including photolysis and
 
microbial biodegradation. Nitrobenzene is poorly bioaccumulated and
 
not biomagnified through the food chain. A number of fairly stable
 
degradation products of nitrobenzene are formed during environmental
 
degradation; some have similar effects, while others operate by
 
different mechanisms. Moreover, whether or not nitrobenzene will be
 
completely broken down (mineralized) at a particular site seems to be
 
questionable. Nitrobenzene may not be degraded in a given sewage
 
treatment plant, and, when present at high concentrations, it also may
 
inhibit the biodegradation of other wastes.
 

Occupational exposure is of great concern, since nitrobenzene can
 
be taken up very readily through the skin as well as by inhalation.
 
Monitoring studies reveal low and highly variable exposures through air
 
and, more rarely, drinking water, with a generally downward trend in
 
exposure levels over the past two decades. At this time, nitrobenzene
 
has been found in 7 of the 1,177 NPL hazardous waste sites in the United
 
States (VIEW 1989). The frequency of these sites within the United
 
States can be seen in Figure 5-l.
 

Because of the relative ease of measurement of many of
 
nitrobenzene's properties and its ready detectability by both chemical
 
analysis and human olfaction (sense of smell), its release, transport
 
and fate, and the consequent exposure of human beings have been studied
 
over a considerable period of time. Thus, the potential for human
 
exposure to nitrobenzene is better understood than that of many other
 
chemicals.
 

5.2 RELEASES TO THE ENVIRONMENT
 

Most (97% to 98%) of the nitrobenzene produced is retained in
 
closed systems for use in synthesizing aniline and other substituted
 
nitrobenzenes and anilines (Dorigan and Hushon 1976; Chemical Marketing
 
Reporter 1987). Most of these products go into the manufacture of
 
various plastic monomers and polymers (50%) and rubber chemicals (27%);
 
a smaller proportion goes into synthesis of hydroquinones (5%), dyes and
 
intermediates (6%), drugs (3%), and pesticides and other specialty items
 
(9%) (Dunlap 1981). A small fraction of the production is used directly
 
in other processes or in consumer products (principally metal and shoe
 
polishes).
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The nitration of benzene in air leads to variable ambient levels in
 
urban areas, making the assessment of releases to the air from waste
 
sites difficult. Nevertheless, limited studies of municipal waste
 
disposal facilities and the more complete evaluation of hazardous waste
 
sites have found nitrobenzene infrequently present and, when present,
 
concentrations have been generally low.
 

5.2.1 Air
 

Direct release of nitrobenzene to air during its manufacture is
 
minimized by the passage of contaminated air through activated charcoal
 
(EPA 1980a), and its subsequent use in closed systems as an intermediate
 
similarly limits direct exposure during industrial processing.
 
Nevertheless, as much as 8.3 million lbs/yr may be released from
 
industrial processes (Dorigan and Hushon 1976). The fraction of these
 
manufacturing losses to air is not known.
 

Use of nitrobenzene as a chemical intermediate or in consumer
 
products such as metal and shoe polishes could contribute to losses via
 
fugitive emissions, wastewater, spills, and end product usage. The
 
extent to which these sources contribute to human exposure has not been
 
evaluated quantitatively.
 

The third principal source of nitrobenzene is the atmospheric
 
photo-chemical reaction of nitrogen oxides with benzene, which
 
presumably is derived from automobile fuels and, to a lesser extent,
 
solvent uses of benzene (Dorigan and Hushon 1976). As benzene releases
 
decline, this source (not quantified) should diminish as well. The
 
contribution of this source is difficult to estimate since most
 
measurements of ambient atmospheric nitrobenzene have been made in urban
 
areas near sites of nitrobenzene manufacture, use, and disposal (see
 
Section 5.4.1). Seasonal variations and those associated with air
 
pollution episodes suggest that this source, although limited, may form
 
a significant proportion of nonoccupational human exposure.
 

5.2.2 Water
 

The effluent discharge produced during nitrobenzene manufacture is
 
the principal source of nitrobenzene release to water. Losses to
 
wastewater have been observed to be 0.09% of production in one plant and
 
2.0% in another (Dorigan and Hushon 1976).
 

The nitrobenzene in wastewater may be lost to the air, degraded by
 
sewage organisms or, rarely, carried through to finished water. The EPA
 
has surveyed nitrobenzene levels reported in effluents from
 
4,000 publicly-owned treatment works (POTWs) and industrial sites. The
 
highest value in effluent was >lOO ppm in the organic and plastics
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industry (Shackelford et al. 1983). Nitrobenzene was detected in one of
 
33 industrial effluents at a concentration greater than 100 µg/L (Perry
 
et al. 1979). Reported nitrobenzene concentrations in raw and treated
 
industrial wastewaters from several industries range from 1.4 to
 
91,000 µg/L (EPA 1983a). The highest concentrations are associated with
 
wastewaters from the organic chemicals and plastics industries.
 

Nitrobenzene was reported at above detectable levels in 1.8% of the
 
1,245 reporting industrial stations (Staples et al. 1985) and in the
 
finished effluent of only 3 of the POTWs and one oil refinery (Ellis
 
et al. 1982). In analysis of runoff samples from 51 catchments in
 
19 cities, the National Urban Runoff Program found no nitrobenzene (Cole
 
et al. 1984).
 

These results suggest that commercial and industrial users of
 
nitrobenzene are dispersed throughout the country, so that concern
 
regarding sources must extend beyond those four states in which
 
nitrobenzene is manufactured.
 

Although nitrobenzene is sparingly soluble in water [1,900 ppm at
 
20°C (Verschueren 1983); 2,090 ppm at 25°C (Banerjee et al. 1980)], its
 
pungent, characteristic odor ["bitter almonds," (Windholz 1983); "shoe
 
polish," (Ruth 1986)] is detectable at water concentrations as low as
 
30 ppb (EPA 1980a). Hence, human exposures to large releases or
 
accumulations in the environment appear unlikely to escape unnoticed.
 
Nitrobenzene was detected in groundwater at 3 of 862 hazardous waste
 
sites at a geometric mean concentration of 1,400 µg/L according to the 
Contract Laboratory Program (CLP) Statistical Database (CLPSD 1988). 
Nitrobenzene was not detected in any surface water samples from the 
862 sites. 

5.2.3 Soil
 

As a source of nitrobenzene exposure of humans, soil appears to
 
rank a distant third in terms of its contribution. Nelson and Hites
 
(1980) reported 8 ppm in the soil of a former dye manufacturing site
 
along the Buffalo River, but failed to detect nitrobenzene in river
 
sediments, as noted above. The presence of nitrobenzene in the soils of
 
abandoned hazardous waste sites is inferred by its presence in the
 
atmosphere above several sites (Harkov et al. 1985; LaRegina et al.
 
1986). Nitrobenzene was detected in soil/sediment samples at 4 of 862
 
hazardous waste sites at a geometric mean concentration of 1,000 µg/kg 
(CLPSD 1988). No further data on nitrobenzene levels released to soils 
were located. 
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5.3 ENVIRONMENTAL FATE
 

Nitrobenzene has been scored in the Pre-Biologic Screen (PBS)
 
(Gillett 1983) which estimates the environmental fate of neutral, unionized
 
organic chemicals and the implications for ecotoxic and, to a
 
lesser extent, health effects. Based on a three-dimensional matrix [for
 
which the components are P (Log Kow), Hc (log of dimensionless Henry's
 
law constant), and t1/2 (log biodegradation half-life)], the PBS scores
 
a candidate chemical in each of the four following categories: A)
 
bioaccumulation and multi-species/multi-media effects; B)
 
bioaccumulation and chronic action; C) chronic action in the water
 
column, including plant uptake and soil leaching; and D) indirect
 
atmospheric action, including inhalation and plant fumigation. For
 
nitrobenzene, the values in the PBS are P = 1.83 (Banerjee et al. 1980)
 
and Hc = -3.02 (Hine and Mookerjee 1975). These values correspond well
 
with observations that nitrobenzene is not bioaccumulated, does not
 
accumulate in soils and sediments, can be taken up by plants, has been
 
reported in groundwater, and has not been associated with either direct
 
or indirect effects in the atmosphere. Half-life values for
 
nitrobenzene indicate that it can be readily biodegraded aerobically in
 
7 days (t1/2 = 0.06) (Tabak et al. 1981); it is degraded anaerobically
 
in 22 days (t1/2 = 1.34) (Hallas and Alexander 1983); and at high
 
concentrations in water is resistant to biodegradation (t 1/2 = > 2)
 
(Korte and Klein 1982).
 

5.3.1 Transport and Partitioning
 

The movement of nitrobenzene in soil, water and air is predicted by
 
its physical properties: (1) water solubility (1,900 ppm) (Verschueren
 
1983); (2) moderate volatility (0.15 mmHg at 20°C) (Mabey et al. 1982);
 
(3) low octanol-water partition coefficient (log Kow = 1.84) (Geyer
 
et al. 1984); and (4) soil/sediment sorption coefficient (Ksed = 36)
 
(Mabey et al. 1982), (Kom = 50.1) (Briggs 1981). The dimensionless
 
Henry's law constant for nitrobenzene (9.6 x 10-4) suggests that
 
transfer from water to air will be significant, but not rapid (EPA
 
1985a; Lyman et al. 1982). Sediment sorption and bioconcentration into
 
aquatic and terrestrial animals are not likely to be significant (EPA
 
1985a). Plant uptake might be expected in terrestrial systems
 
(McFarlane et al. 1987a, 1987b). Leaching through soil may occur.
 

Vapor densities reported for nitrobenzene relative to air range
 
from 4.1 to 4.25 (Anderson 1983; Beard and Noe 1981; Dorigan and Hushon
 
1976; Dunlap 1981). Removal processes of nitrobenzene in air may
 
involve settling of vapor due to its higher density relative to air
 
(Dorigan and Hushon 1976). Washout by rainfall (either through solution
 
in rain drops or by removal of nitrobenzene sorbed onto particulates)
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and dry fall of particulates are negligible, as estimated by Cupitt
 
(1980) and expressly measured in field releases (Dana et al. 1984).
 
Atmospheric residence time was estimated to be 190 days (Cupitt 1980).
 

Briggs (1981) compared the soil sorption coefficient (Kd) expressed
 
in terms of organic matter (Kom), where Kom = 100xKd/(% organic matter),
 
for a wide variety of chemicals and soils to the octanol-water partition
 
coefficient Kow. Briggs (1973) classified soil mobility using log Kow
 

and log organic matter (om) content and compared this classification to
 
that of Helling and Turner (1968), based on soil thin layer
 
chromatography. Nitrobenzene would be in mobility class III
 
(intermediate).
 

Jury et al. (1984) also classified nitrobenzene as intermediately
 
mobile, but noted that its loss from soil would be enhanced by
 
evaporation of water. Moreover, because nitrobenzene has relatively
 
poor diffusive flux, the material would tend to move as a bolus within
 
soil. Jury et al. (1984) hypothesized that a deposit 10 cm deep in soil
 
would have a half-life of about 19 days.
 

Other results also indicate that nitrobenzene is intermediately
 
mobile in forest and agricultural soils (Seip et al. 1986). However,
 
nitrobenzene was somewhat more mobile in soil with lower organic carbon
 
content. The authors attribute this to hydrogen bonding interactions of
 
nitrobenzene with organic matter in the soil.
 

Piwoni et al. (1986) found that nitrobenzene did not volatilize in
 
their microcosms simulating land-application of wastewater, but was
 
totally degraded. Enfield et al. (1986) employed a calculated Henry's
 
law constant of 1.30 x 10-3 kPa m3 mol-1, and arrived at a biodegradation
 
rate coefficient greater than 8 day -l. They predicted that 0.2% of the
 
added nitrobenzene could be accounted for in volatiles. The EXAMS
 
computer model (Burns et al. 1981) predicts volatilization half-lives of
 
12 days (river) to 68 days (eutrophic lake) and up to 2% sediment
 
sorption for nitrobenzene.
 

In a laboratory-scale waste treatment study, Davis et al. (1981)
 
estimated that 25% of the nitrobenzene was degraded and 75% was lost
 
through volatility in a system yielding a loss of about 80% of initial
 
nitrobenzene in 6 days. In a stabilization pond study, the half-life by
 
volatilization was about 20 hours, with approximately 3% adsorbed to
 
sediments (Davis et al. 1983).
 

The measured bioconcentration factors (BCF) for nitrobenzene in
 
several organisms indicate minimal bioconcentration in aquatic
 
organisms. Veith et al. (1979) found the 28-day flow-through test for
 
fathead minnows yielded a BCF of 15. A less satisfactory 3-day static
 
measurement gave a BCF of less than 10 for the golden ore (Freitag
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et al. 1982). In the Metcalf model "farm pond" microcosm (Lu and
 
Metcalf 1975), the Ecological Magnification Index (EM: ratio of
 
concentration of parent material in organism to concentration of parent
 
material in water) was about 8 in mosquitofish (Gambusia affinis) after
 
a 24-hr exposure. Longer exposures of other species, however, did not
 
increase the value; the EM in snails (Physa sp.) was 0.7, in mosquito
 
(Culex quinquifasciatus) larvae was 0.8, in Daphnia magna was 0.15, and
 
in alga (Oedogonium) was 0.03. Bioaccumulation from water is not
 
considered significant at values of less than 300 (Trabalka and Garten
 
1981).
 

Nitrobenzene may bioconcentrate in terrestrial plants. The
 
relatively rapid uptake of 14C-labeled nitrobenzene into mature soybean
 
(Glycine max L Merr) plants was reported by McFarlane et al. (1987a,
 
1987b) and Nolt (1988). Plant uptake is, therefore, a possible route of
 
human exposure to nitrobenzene.
 

5.3.2 Transformation and Degradation
 

5.3.2.1 Air
 

p-Nitrophenol and nitrosobenzene were reported to be the principal
 
photodegradation products of nitrobenzene vapors exposed to UV light in
 
air (Hastings and Matsen 1948). In another study, both o- and
 
p-nitrophenols were found when 02 was present and phenol was also found
 
when 02 was absent (Nojima and Kanno 1977). Photolysis by reaction with
 
hydroxyl radicals or ozone was found to be insignificant in the
 
troposphere (Atkinson et al. 1987). Based on laboratory studies, they
 
projected half-lives of nitrobenzene of 180 days by reaction with
 
hydroxyl radicals and more than 6 years by reaction with ozone in
 
"clean" air. In typical, moderately "dirty" air, these values would
 
decrease to 90 days and more than 2 years, respectively.
 

As noted earlier, nitrobenzene is formed by reaction of benzene
 
with NO2 and Atkinson et al. (1987) reported that aniline is slowly
 
oxidized to nitrobenzene by ozone. Further nitration of nitrobenzene
 
appears to be negligible. These reactions are summarized in Figure 5-2.
 

Atmospheric photochemical decomposition is, therefore, thought to
 
be an important removal route of nitrobenzene itself (EPA 1985a).
 

5.3.2.2 Water
 

There is no known mechanism of hydrolysis of nitrobenzene; however,
 
photolysis and biodegradation are significant nitrobenzene degradation
 
pathways in water (Callahan et al. 1979; Mabey et al. 1982).
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Photolysis. Photochemical oxidation of nitrobenzene by hydrogen
 
peroxide yields p-, o-, and m-nitrophenols (Draper and Crosby 1984) with
 
an estimated half-life of 250 days (Dorfman and Adams 1973). Direct
 
photolysis, measured by Zepp and Scholtzhauer (1983), has a half-life of
 
2.5 to more than 6 days near the surface of bodies of water in the 
vicinity of 40°N latitude. 

Under laboratory conditions, direct photolysis of nitrobenzene in
 
solvents such as isopropanol yields phenylhydroxylamine, which can be
 
oxidized to nitrosobenzene by oxygen (Hurley and Testa 1966, 1967).
 
Phenylhydroxylamine and nitrosobenzene can then combine to form
 
azoxybenzene. However, these reactions may not be important under
 
natural conditions in the absence of hydrogen donors (Mabey et al.
 
1982). Callahan et al. (1979) proposed that sorption of nitrobenzene to
 
humics could enhance photolytic destruction of nitrobenzene. Simmons
 
and Zepp (1986), however, found that photolysis of nitrobenzene was not
 
appreciably enhanced by either a natural humic-containing water or a
 
commercial humic sample. Zepp et al. (1987a) reported that hydrated
 
electrons from dissolved organic matter could significantly increase
 
photoreduction of compounds such as nitrobenzene, and that photolysis of
 
nitrate ions to hydroxyl radicals increased nitrobenzene
 
photodegradation (Zepp et al. 1987b). Algae do not enhance photolysis
 
of nitrobenzene (Zepp and Scholtzhauer 1983). Photolysis may be an
 
important pathway in natural waters (EPA 1985a), but probably only under
 
conditions where biodegradation is poor or absent and where both UV
 
irradiance and appropriate facilitating molecules occur in relatively
 
clear waters.
 

Biodegradation. Nitrobenzene may be almost completely removed by
 
activated sludge treatment (EPA 1983a). Pitter (1976) obtained 98%
 
removal of chemical oxygen demand (COD) at a rate of 14 mg COD/hr/g dry
 
weight of activated sludge with nitrobenzene as the sole carbon source.
 
Tabak et al. (1981) obtained 100% biodegradation in settled domestic
 
wastewater in 7 days. Hallas and Alexander (1983) reported 100%
 
degradation in 10 days after a 6-day lag under aerobic conditions with
 
municipal sewage effluent. Similar results have been reported by a
 
number of researchers (Davis et al. 1981, 1983; Kincannon et al. 1983;
 
Patil and Shinde 1988; Stover and Kincannon 1983) using a variety of
 
model sewage treatment reactors and wastewater sources, including
 
adapted industrial sludges.
 

Nitrobenzene is also degradable by anaerobic processes, but more
 
slowly than described above. Chou et al. (1978) reported that
 
nitrobenzene was 81% removed in 110 days by acclimated domestic sludge
 
in an anaerobic reactor, and Hallas and Alexander (1983) found that 50%
 
was degraded in 12 days under similar conditions. Canton et al. (1985)
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measured an 8% decrease in nitrobenzene after 8 days in unadapted media,
 
but reported a half-life of less than 2 weeks in adapted media.
 

Nitrobenzene was either highly resistant to degradation or
 
inhibited biodegradation of other components of the waste in several
 
biodegradation studies (Barth and Bunch 1979; Davis et al. 1981; Korte
 
and Klein 1982; Lutin et al. 1965; Marion and Malaney 1963). However,
 
these effects were observed at concentrations (≥50 mg/L) of nitrobenzene 
much higher than those detected in ambient waters (see Section 5.4.2). 

5.3.2.3 Soil
 

There is a paucity of studies of nitrobenzene in soil.
 
Decomposition of nitrobenzene in a 1% suspension of Niagara silt loam
 
took more than 64 days, while aniline and phenol, commonly metabolites
 
of nitrobenzene, were completely degraded in 4 and 1 days, respectively
 
(Alexander and Lustigman 1966). In contrast, a study of the efficacy of
 
soil infiltration along the Rhine River in the Netherlands showed that
 
nitrobenzene was removed completely in moving 50 cm through a peat-sand
 
artificial dune (Piet et al. 1981).
 

5.4 LEVELS MONITORED OR ESTIMATED IN THE ENVIRONMENT
 

Monitoring of nitrobenzene in the environment reveals variably low
 
levels in air, very infrequent occurrence in surface waters, and
 
infrequent occurrence but higher levels in industrial wastewaters,
 
Nitrobenzene may be present in soils at hazardous waste sites.
 

5.4.1 Air
 

Most of the information on nitrobenzene levels in air is derived
 
from a series of reports from New Jersey, in which ambient air in urban,
 
rural, and waste disposal areas were monitored extensively. In the
 
initial study (Bozzelli et al. 1980), nitrobenzene was not detected
 
above the level of 0.01 ppb in about 260 samples collected in 1979. In
 
1978, nitrobenzene levels averaged 0.40 ppb in industrial areas, and
 
0.02 and 0.09 ppb in two residential areas, but that in 1982, levels in
 
residential areas were approximately 0.3 ppb or less, while levels in
 
industrial areas were 0.9 ppb or more (Bozzelli and Kebbekus 1982).
 
Again, most of the samples were negative for nitrobenzene. The highest
 
values were 3.5 to 5.7 ppb.
 

Harkov et al. (1983) reported low levels of nitrobenzene (0.07 to
 
0.1 ppb) in approximately 85% of air samples of nitrobenzene in their
 
study of airborn toxic chemicals in summer. Nitrobenzene was not
 
detected during the winter (Harkov et al. 1984; Lioy et al. 1983).
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Studies of air over waste disposal sites (Harkov et al. 1985) are
 
confounded by weather and timing. Air at one landfill showed a mean
 
nitrobenzene concentration of 1.32 ppb and another of 0.3 ppb; but at
 
two other sites (measured during snow and/or rain), nitrobenzene was not
 
detected. LaRegina et al. (1986) summarized these studies by noting
 
that the highest value for nitrobenzene was 14.48 ppb at a hazardous
 
waste site, whereas nitrobenzene was often undetectable elsewhere
 
(especially in rural areas or at sanitary landfills) or anywhere in the
 
air during the winter.
 

Very little information is available for other areas of the United
 
States. Pellizzari (1978b) found only one positive value of 107 ng/m3
 

(20 ppb) at a plant site in Louisiana. Early data (summarized in EPA
 
1985a) show less than 25% of United States air samples positive with a
 
median concentration of about 0.01 ppb.
 

5.4.2 Water
 

A nitrobenzene concentration of about 20 ppb in the final effluent
 
of a Los Angeles County municipal wastewater treatment plant in 1978 and
 
less than 10 ppb in 1980 was reported (Young et al. 1983). Nitrobenzene
 
was not reported in runoff samples in 1982 in a nation-wide project
 
(Cole et al. 1984). Kopfler et al. (1977) list nitrobenzene as one of
 
the chemicals found in finished tap water in the United States, but do
 
not report its concentrations or locations. Levins et al. (1979)
 
reported only one positive sample (total sample number not stated) in
 
Hartford, Connecticut, sewage treatment plant influents, and no
 
nitrobenzene was detected in samples taken from three other major
 
metropolitan areas. Nitrobenzene was detected in only 0.4% of the 836
 
ambient surface water stations involved in EPA's STORET database
 
(Staples et al. 1985). No data were located on occurrence of
 
nitrobenzene in groundwater.
 

Nitrobenzene is detected more frequently and at higher
 
concentrations in effluents from industrial sources. The STORET
 
database shows that 1.8% of the 1,245 reporting stations on industrial
 
wastewaters have had measurable values (Staples et al. 1985).
 

5.4.3 Soil
 

The only measurement of nitrobenzene in soil located was a value of
 
8 ppm detected is soil at one of two sampling sites along the bank of
 
the industrially polluted Buffalo River in New York (Nelson and Hites
 
1980). Nitrobenzene was not detected at any of three sediment sampling
 
sites in this study.
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5.4.4 Other Media
 

Nitrobenzene has not been found in other environmental media. It
 
has not been detected as a bioaccumulated material in fish samples
 
(Staples et al. 1985). No monitoring of plant tissues has been
 
reported, even though uptake of nitrobenzene by plants has been observed
 
(McFarlane et al. 1987a, 1987b). Data on nitrobenzene occurrence in
 
foods were not located in the available literature.
 

5.5 GENERAL POPULATION AND OCCUPATIONAL EXPOSURE
 

Apparently general exposure of the population to nitrobenzene is
 
limited to variable concentrations in air and possibly drinking water.
 
Air levels can be high in the vicinity of manufacturing or production
 
facilities (especially petroleum refining, leather finishing and some
 
chemical manufacturers). Urban areas have much higher levels in the
 
summer than winter due to both the formation of nitrobenzene by
 
nitration of benzene (from motor vehicle fuels) and the higher
 
volatility of nitrobenzene during the warmer months. Ambient exposure
 
in the winter may be negligible.
 

Occupational exposure can be significantly higher than the exposure
 
of the general population. NIOSH (1988) identified about 10,600 workers
 
(mainly chemists, equipment servicers, and janitorial staff) as
 
potentially exposed workers in facilities where nitrobenzene is used.
 
Because nitrobenzene is readily absorbed through the skin, as well as
 
taken up by inhalation and ingestion, industrial exposure necessitates
 
worker protection, and this has been recognized for decades. At an
 
industrial exposure level of 5 mg/m3 (1 ppm), a worker would receive
 
about 25 mg during an 8-hour day (Dunlap 1981).
 

5.6 POPULATIONS WITH POTENTIALLY HIGH EXPOSURES
 

Based on the New Jersey air studies and on estimates of releases
 
during manufacture, only populations in the vicinity of manufacturing
 
activities (i.e., producers and industrial consumers of nitrobenzene for
 
subsequent synthesis) and petroleum refining plants are likely to have
 
any significant exposure to anthropogenic nitrobenzene. However,
 
consideration of possible groundwater and soil contamination and uptake
 
of nitrobenzene by plants expands the potentially high exposure group to
 
include people living in and around abandoned hazardous waste sites.
 

The numbers of people actually exposed to ambient concentrations of
 
nitrobenzene are unknown. Based on the locations of production and
 
other manufacturing facilities, tens of millions of people might be
 
exposed to low levels of this compound.
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5.7 ADEQUACY OF THE DATABASE
 

Section 104(i)(5) of CERCLA, directs the Administrator of ATSDR (in
 
consultation with the Administrator of EPA and agencies and programs of
 
the Public Health Service) to assess whether adequate information on the
 
health effects of nitrobenzene is available. Where adequate information
 
is not available, ATSDR, in conjunction with the NTP, is required to
 
assure the initiation of a program of research designed to determine the
 
health effects (and techniques for developing methods to determine such
 
health effects) of nitrobenzene.
 

The following categories of possible data needs have been
 
identified by a joint team of scientists from ATSDR, NTP, and EPA. They
 
are defined as substance-specific informational needs that, if met would
 
reduce or eliminate the uncertainties of human health assessment. In
 
the future, the identified data needs will be evaluated and prioritized,
 
and a substance-specific research agenda will be proposed.
 

5.7.1 Identification of Data Needs
 

Physical and Chemical Properties. No specific data needs,are
 
identified for these properties, for which available values are
 
generally accepted.
 

Production, Use, Release and Disposal. Available data indicate
 
that most nitrobenzene produced in the United States is consumed in the
 
production of aniline, but current quantitative data on the amount of
 
nitrobenzene released to the environment during nitrobenzene production
 
and use are sparse. Collection of this information would be helpful in
 
evaluating the effect of current industrial practices on environmental
 
levels of nitrobenzene.
 

According to the Emergency Planning and Community Right to Know Act
 
of 1986 (EPCRTKA), (§313), (Pub. L. 99-499, Title III, §313), industries
 
are required to submit release information to the EPA. The Toxic
 
Release Inventory (TRI), which contains release information for 1987,
 
became available in May of 1989. This database will be updated yearly
 
and should provide a more reliable estimate of industrial production and
 
emission.
 

Environmental Fate. The environmental fate of nitrobenzene is
 
fairly well understood within the context of recognition of the
 
importance of conditions in estimating or modelling environmental
 
concentrations. The most critical condition is the presence/absence of
 
a viable, competent and functioning population of microorganisms for
 
biodegradation. The next most critical factor is the amount of
 
sunlight. For exposure assessment modelling accuracy, more data are
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needed on fate in soil, both in the root zone where plants are exposed
 
and in the saturated and unsaturated zones where groundwater may become
 
contaminated. Metabolism in plants is poorly characterized to date, so
 
that information on the nature and quantity of plant metabolites would
 
assist assessment of exposure via that route.
 

Bioavailability from Environmental Media. The available
 
information indicates that nitrobenzene is well absorbed following
 
inhalation, oral or dermal exposure. It is expected to be well absorbed
 
by persons breathing or having dermal contact with contaminated air or
 
ingesting water, soil, plants or any environmental materials that
 
contain it. It would be useful to have information on its absorption
 
after dermal contact with contaminated soil or plant material.
 

Food Chain Bioaccumulation. Uptake and accumulation of
 
nitrobenzene through food chains are well understood regarding animal
 
tissues, especially fish. However, more information about plant tissues
 
would be helpful.
 

Exposure Levels in Environmental Media. Because nitrobenzene is a
 
priority pollutant, extensive data are available on its occurrence in
 
surface waters, sediments, and aquatic animals. It would be useful to
 
have data on its presence in soils and groundwater and correlations of
 
measured air concentrations to soil levels and of plant levels to soil
 
concentrations.
 

Exposure Levels in Humans. There is very little information on
 
human exposure to nitrobenzene outside of the workplace. More detailed
 
exposure analyses that take transformation pathways into account need to
 
be performed for local sites and the potentially impacted populations.
 
Further, it would be useful to know more about the relationship of the
 
organoleptic properties of nitrobenzene with respect to tolerable
 
exposures. For example, it would be useful to know whether its taste
 
and aroma are deterents to high levels of human exposure.
 

Exposure Registries. No exposure registries for nitrobenzene were
 
located. This compound is not currently one of the compounds for which
 
a subregistry has been established in the National Exposure Registry.
 
The compound will be considered in the future when chemical selection is
 
made for subregistries to be established. The information that is
 
amassed in the National Exposure Registry facilitates the
 
epidemiological research needed to assess adverse health outcomes that
 
may be related to the exposure to this compound.
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5.7.2 On-going Studies
 

No long-term research projects or other on-going studies of
 
occupational or general population exposures to nitrobenzene were
 
identified.
 

As part of the Third National Health and Nutrition Evaluation
 
Survey (NHANES III), the Environmental Health Laboratory Sciences
 
Division of the Centers for Disease Control, will be analyzing human
 
urine samples for p-nitrophenol and other phenolic compounds. Since
 
p-nitrophenol is a major metabolite of nitrobenzene, the presence of
 
p-nitrophenol in the urine can be used to indicate exposure to
 
nitrobenzene. These data will give an indication of the frequency of
 
occurrence and background levels of these compounds in the general
 
population.
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The purpose of this chapter is to describe the analytical methods
 
that are available for detecting and/or measuring and monitoring
 
nitrobenzene in environmental media and in biological samples. The
 
intent is not to provide an exhaustive list of analytical methods that
 
could be used to detect and quantify nitrobenzene. Rather, the
 
intention is to identify well-established methods that are used as the
 
standard methods of analysis. Many of the analytical methods used to
 
detect nitrobenzene in environmental samples are the methods approved by
 
federal agencies such as EPA and the National Institute for Occupational
 
Safety and Health (NIOSH). Other methods presented in this chapter are
 
those that are approved by a trade association such as the Association
 
of Official Analytical Chemists (AOAC) and the American Public Health
 
Association (APHA). Additionally, analytical methods are included that
 
refine previously used methods to obtain lower detection limits, and/or
 
to improve accuracy and precision.
 

6.1 BIOLOGICAL MATERIALS
 

Nitrobenzene is volatile; it has a boiling point of 211°C and a
 
vapor pressure (20°C) of 0.15 mmHg. Its water solubility (20°C) is
 
1,900 mg/L. It has a log octanol/water partition coefficient value of
 
1.85, implying a relatively weak affinity for lipids. These properties
 
affect the manner in which biological samples are analyzed for
 
nitrobenzene. Albrecht and Neumann (1985) discussed the difficulty of
 
analysis of nitrobenzene and its metabolite aniline in animals.
 
Excretion of the parent compounds or some metabolites in urine has been
 
determined, but apparently this kind of biological monitoring has so far
 
not produced satisfactory results due to practical and methodological
 
reasons. Nitrobenzene metabolites are bound to blood proteins, both in
 
hemoglobin and in plasma (Albrecht and Neumann 1985). Acute poisoning
 
by nitrobenzene is usually monitored by measuring levels of
 
methemoglobin, which is produced by the metabolic products of
 
nitrobenzene. However, many toxicants produce methemoglobin, and this
 
analysis is not specific enough to be a satisfactory method for
 
monitoring nitrobenzene in animals.
 

Analytical methods for the determination of nitrobenzene in
 
biological materials are given in Table 6-l.
 

6.2 ENVIRONMENTAL SAMPLES
 

Nitrobenzene is determined in environmental samples by collection,
 
extraction with an organic solvent and gas chromatographic analysis (EPA
 
1982a, 1982b; NIOSH 1984). Flame ionization detection or mass
 
spectrometry may be used for detection.
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Analytical methods for the determination of nitrobenzene in
 
environmental samples are given in Table 6-2.
 

6.3 ADEQUACY OF THE DATABASE
 

Section 104(i)(5) of CERCLA, directs the Administrator of ATSDR (in
 
consultation with the Administrator of EPA and agencies and programs of
 
the Public Health Service) to assess whether adequate information on the
 
health effects of nitrobenzene is available. Where adequate information
 
is not available, ATSDR, in conjunction with the NTP, is required to
 
assure the initiation of a program of research designed to determine the
 
health effects (and techniques for developing methods to determine such
 
health effects) of nitrobenzene.
 

The following categories of possible data needs have been
 
identified by a joint team of scientists from ATSDR, NTP, and EPA. They
 
are defined as substance-specific informational needs that, if met would
 
reduce or eliminate the uncertainties of human health assessment. In
 
the future, the identified data needs will be evaluated and prioritized,
 
and a substance-specific research agenda will be proposed.
 

6.3.1 Identification of Data Needs
 

Methods for Determining Biomarkers of Exposure and Effect.
 
Sensitive and selective methods are available for the qualitative and
 
quantitative measurement of nitrobenzene after it is separated from its
 
sample matrix. Capillary gas chromatography, also known broadly as
 
high-resolution gas chromatography (HRGC), has greatly facilitated the
 
analysis of compounds such as nitrobenzene that can be measured by gas
 
chromatography and has resulted in vast improvements in resolution and
 
sensitivity. It has made the choice of a stationary phase much less
 
crucial than was the case with packed columns. The instrumental
 
capability to separate volatile analytes by HRGC is no longer the
 
limiting factor in their analysis. Further development of methods for
 
the transfer of isolated analytes, quantitatively and in a narrow band,
 
to the HRGC, and the identification and accurate measurement of
 
compounds in the HRGC peaks would be useful. Mass spectrometry (MS) has
 
been outstanding for the detection of various organic compounds but
 
other techniques, particularly Fourier transform infrared spectroscopy
 
(FTIR) may be superior for nitrobenzene. Because nitrobenzene is
 
metabolized in biological systems, it is difficult to accurately
 
determine in most biological samples after enough time has elapsed for
 
these metabolic processes to take place. Therefore, although
 
nitrobenzene itself can be easily determined in biological samples, it
 
is rarely found in its unchanged form in these samples. Metabolites of
 
nitrobenzene in biological materials are difficult to determine in
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routine practice because of the lack of standardized methods for
 
measuring these compounds and because of the difficulty of correlating
 
the presence or levels of these metabolites directly with exposure to
 
nitrobenzene.
 

The development of supercritical fluid (SCF) extraction combined
 
with chromatographic analysis will probably be useful for meeting the
 
goals of quantitative, rapid, easily performed, low cost and safe
 
procedures for the determination of poorly volatile organic analytes
 
such as nitrobenzene and its metabolites in biological samples
 
(Hawthorne 1988).
 

Methods for the determination of biomarkers of effect for
 
nitrobenzene are largely confined to measurement of methemoglobin, which
 
is also produced by numerous toxicants other than nitrobenzene. More
 
specific methods for biomarkers of exposure would be helpful in
 
toxicological studies of nitrobenzene.
 

Methods for Determining Parent Compounds and Degradation Products
 
in Environmental Media. Methods for determining the parent compound,
 
nitrobenzene, in water, air, and waste samples with excellent
 
selectivity and sensitivity are well developed and constantly improving.
 
It is desirable to have the means to measure organic compounds such as
 
nitrobenzene in situ in water and other environmental media without the
 
need for sampling and extraction procedures to isolate the analyte prior
 
to analysis.
 

6.3.2 On-going Studies
 

Research is ongoing to develop a Master Analytical Scheme for
 
organic compounds, including nitrobenzene, in water (Michael et al.
 
1988). The overall goal is to detect and quantitatively measure organic
 
compounds at 0.1 µg/L in drinking water, 1 µg/L in surface waters, and 
10 µg/L in effluent waters. Analytes are to include numerous 
nonvolatile compounds and some compounds that are only "semi-soluble" in 
water, as well as volatile compounds (bp < 150°C). Improvements 
continue to be made in chromatographic separation and detection, 
including the areas of supercritical fluid extraction and supercritical 
fluid chromatography (Smith 1988). An important aspect of supercritical 
fluid chromatographic analysis of compounds such as nitrobenzene is 
detection. Fourier transform infrared flow cell detectors are promising 
for this application (Wieboldt et al. 1988). Immunoassay methods of 
analysis are promising for the determination of various organic 
pollutants and toxicants, and nitrobenzene may be a candidate for 
immunoassay techniques. 
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The Environmental Health Laboratory Sciences Division of the Center
 
for Environmental Health and Injury Control, Centers for Disease
 
Control, is developing methods for the analysis of nitrobenzene and
 
other compounds. These methods use high resolution gas chromatography
 
and magnetic sector mass spectrometry.
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7. REGULATIONS AND ADVISORIES
 

Because of its potential to cause adverse health effects in exposed
 
people, a number of regulations and guidelines have been established for
 
nitrobenzene by various international, national and state agencies.
 
These values are summarized in Table 7-l.
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9.GLOSSARY
 

Acute Exposure -- Exposure to a chemical for a duration of 14 days or
 
less, as specified in the Toxicological Profiles.
 

Adsorption Coefficient (Koc) -- The ratio of the amount of a chemical
 
adsorbed per unit weight of organic carbon in the soil or sediment to
 
the concentration of the chemical in solution at equilibrium.
 

Adsorption Ratio (Kd) -- The amount of a chemical adsorbed by a sediment
 
or soil (i.e., the solid phase) divided by the amount of chemical in the
 
solution phase, which is in equilibrium with the solid phase, at a fixed
 
solid/solution ratio. It is generally expressed in micrograms of
 
chemical sorbed per gram of soil or sediment.
 

Bioconcentration Factor (BCF) -- The quotient of the concentration of a
 
chemical in aquatic organisms at a specific time or during a discrete
 
time period of exposure divided by the concentration in the surrounding
 
water at the same time or during the same time period.
 

Cancer Effect Level (CEL) -- The lowest dose of chemical in a study or
 
group of studies which produces significant increases in incidence of
 
cancer (or tumors) between the exposed population and its appropriate
 
control.
 

Carcinogen -- A chemical capable of inducing cancer.
 

Ceiling value (CL) -- A concentration of a substance that should not be
 
exceeded, even instantaneously.
 

Chronic Exposure -- Exposure to a chemical for 365 days or more, as
 
specified in the Toxicological Profiles.
 

Developmental Toxicity -- The occurrence of adverse effects on the
 
developing organism that may result from exposure to a chemical prior to
 
conception (either parent), during prenatal development, or postnatally
 
to the time of sexual maturation. Adverse developmental effects may be
 
detected at any point in the life span of the organism.
 

Embryotoxicity and Fetotoxicity -- Any toxic effect on the conceptus as
 
a result of prenatal exposure to a chemical; the distinguishing feature
 
between the two terms is the stage of development during which the
 
insult occurred. The terms, as used here, include malformations and
 
variations, altered growth, and in utero death.
 



 

106
 

9. GLOSSARY
 

EPA Health Advisory -- An estimate of acceptable drinking water levels
 
for a chemical substance based on health effects information. A health
 
advisory is not a legally enforceable federal standard, but serves as
 
technical guidance to assist federal, state, and local officials.
 

Immediately Dangerous to Life or Health (IDLH) -- The maximum
 
environmental concentration of a contaminant from which one could escape
 
within 30 min without any escape-impairing symptoms or irreversible
 
health effects.
 

Intermediate Exposure -- Exposure to a chemical for a duration of 15-364
 
days, as specified in the Toxicological Profiles.
 

Immunologic Toxicity -- The occurrence of adverse effects on the immune
 
system that may result from exposure to environmental agents such as
 
chemicals.
 

In Vitro -- Isolated from the living organism and artificially
 
maintained, as in a test tube.
 

In Vivo -- Occurring within the living organism.
 

Lethal Concentration(LO) (LCLO) -- The lowest concentration of a chemical
 
in air which has been reported to have caused death in humans or
 
animals.
 

Lethal Concentration(50) (LC50) -- A calculated concentration of a
 
chemical in air to which exposure for a specific length of time is
 
expected to cause death in 50% of a defined experimental animal
 
population.
 

Lethal Dose(LO) (LDLO) -- The lowest dose of a chemical introduced by a
 
route other than inhalation that is expected to have caused death in
 
humans or animals.
 

Lethal Dose(50) (LD50) -- The dose of a chemical which has been
 
calculated to cause death in 50% of a defined experimental animal
 
population.
 

Lethal Time(50) (LT50) -- A calculated period of time within which a
 
specific concentration of a chemical is expected to cause death in 50%
 
of a defined experimental animal population.
 

Lowest-Observed-Adverse-Effect Level (LOAEL) -- The lowest dose of
 
chemical in a study or group of studies which produces statistically or
 
biologically significant increases in frequency or severity of adverse
 
effects between the exposed population and its appropriate control.
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9. GLOSSARY
 

Malformations -- Permanent structural changes that may adversely affect
 
survival, development, or function.
 

Minimal Risk Level (MRL) -- An estimate of daily human exposure to a
 
chemical that is likely to be without an appreciable risk of deleterious
 
effects (noncancerous) over a specified duration of exposure.
 

Mutagen -- A substance that causes mutations. A mutation is a change in
 
the genetic material in a body cell. Mutations can lead to birth
 
defects, miscarriages, or cancer.
 

Neurotoxicity -- The occurrence of adverse effects on the nervous system
 
following exposure to a chemical.
 

No-Observed-Adverse-Effect Level (NOAEL) -- That dose of chemical at
 
which there are no statistically or biologically significant increases
 
in frequency or severity of adverse effects seen between the exposed
 
population and its appropriate control. Effects may be produced at this
 
dose, but they are not considered to be adverse.
 

Octanol-Water Partition Coefficient (Kow) -- The equilibrium ratio of
 
the concentrations of a chemical in n-octanol and water, in dilute
 
solution.
 

Permissible Exposure Limit (PEL) -- An allowable exposure level in
 
workplace air averaged over an 8-hour shift.
 

q1* -- The upper-bound estimate of the low-dose slope of the doseresponse
 
curve as determined by the multistage procedure. The q1* can
 
be used to calculate an estimate of carcinogenic potency, the
 
incremental excess cancer risk per unit of exposure (usually µg/L for 
water, mg/kg/day for food, and µg/m3 for air). 

Reference Dose (RfD) -- An estimate (with uncertainty spanning perhaps
 
an order of magnitude) of the daily exposure of the human population to
 
a potential hazard that is likely to be without risk of deleterious
 
effects during a lifetime. The RfD is operationally derived from the
 
NOAEL (from animal and human studies) by a consistent application of
 
uncertainty factors that reflect various types of data used to estimate
 
RfDs and an additional modifying factor, which is based on a
 
professional judgment of the entire database on the chemical. The RfDs
 
are not applicable to nonthreshold effects such as cancer.
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Reportable Quantity (RQ) -- The quantity of a hazardous substance that
 
is considered reportable under CERCLA. Reportable quantities are: (1)
 
1 lb or greater or (2) for selected substances, an amount established by
 
regulation either under CERCLA or under Sect. 311 of the Clean Water
 
Act. Quantities are measured over a 24-hour period.
 

Reproductive Toxicity -- The occurrence of adverse effects on the
 
reproductive system that may result from exposure to a chemical. The
 
toxicity may be directed to the reproductive organs and/or the related
 
endocrine system. The manifestation of such toxicity may be noted as
 
alterations in sexual behavior, fertility, pregnancy outcomes, or
 
modifications in other functions that are dependent on the integrity of
 
this system.
 

Short-Term Exposure Limit (STEL) -- The maximum concentration to which
 
workers can be exposed for up to 15 min continually. No more than four
 
excursions are allowed per day, and there must be at least 60 min
 
between exposure periods. The daily TLV-TWA may not be exceeded.
 

Target Organ Toxicity -- This term covers a broad range of adverse
 
effects on target organs or physiological systems (e.g., renal,
 
cardiovascular) extending from those arising through a single limited
 
exposure to those assumed over a lifetime of exposure to a chemical.
 

Teratogen -- A chemical that causes structural defects that affect the
 
development of an organism.
 

Threshold Limit Value (TLV) -- A concentration of a substance to which
 
most workers can be exposed without adverse effect. The TLV may be
 
expressed as a TWA, as a STEL, or as a CL.
 

Time-weighted Average (TWA) -- An allowable exposure concentration
 
averaged over a normal 8-hour workday or 40-hour workweek.
 

Toxic Dose (TD50) -- A calculated dose of a chemical, introduced by a
 
route other than inhalation, which is expected to cause a specific toxic
 
effect in 50% of a defined experimental animal population.
 

Uncertainty Factor (UF) -- A factor used in operationally deriving the
 
RfD from experimental data. UFs are intended to account for (1) the
 
variation in sensitivity among the members of the human population, (2)
 
the uncertainty in extrapolating animal data to the case of humans, (3)
 
the uncertainty in extrapolating from data obtained in a study that is
 
of less than lifetime exposure, and (4) the uncertainty in using LOAEL
 
data rather than NOAEL data. Usually each of these factors is set equal
 
to 10.
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APPENDIX
 

PEER REVIEW
 

A peer review panel was assembled for nitrobenzene. The panel
 
consisted of the following members: Dr. Lloyd Hastings, Research
 
Associate Professor, Department of Environmental Health, University of
 
Cincinnati; Dr. Judith Marquis, Associate Professor, Department of
 
Pharmacology, Boston University School of Medicine; Dr. James Popp,
 
Head, Department of Environmental Pathology, Chemical Industry Institute
 
of Toxicology; Dr. Rajender Abraham, Private Consultant, Brookview, NY;
 
and Dr. Martin Alexander, Professor, Department of Agronomy, Cornell
 
University. These experts collectively have knowledge of nitrobenzene's
 
physical and chemical properties, toxicokinetics, key health end points,
 
mechanisms of action, human and animal exposure, and quantification of
 
risk to humans. All reviewers were selected in conformity with the
 
conditions for peer review specified in Section 104(i)(13) of the
 
Comprehensive Environmental Response, Compensation, and Liability Act,
 
as amended.
 

Scientists from ATSDR have reviewed the peer reviewers' comments
 
and determined which comments will be included in the profile. A
 
listing of the peer reviewers' comments not incorporated in the profile,
 
with a brief explanation of the rationale for their exclusion, exists as
 
part of the administrative record for this compound. A list of
 
databases reviewed and a list of unpublished documents cited are also
 
included in the administrative record.
 

The citation of the peer review panel should not be understood to
 
imply their approval of the profile's final content. The responsibility
 
of the content of this profile lies with the Agency for Toxic Substances
 
and Disease Registry.
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